7.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且a1=1,an+1=-SnSn+1,則使$\frac{n{{S}_{n}}^{2}}{1+10{{S}_{n}}^{2}}$取得最大值時(shí)n的值為3.

分析 a1=1,an+1=-SnSn+1,可得$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=1,利用等差數(shù)列的通項(xiàng)公式可得Sn=$\frac{1}{n}$.于是$\frac{n{{S}_{n}}^{2}}{1+10{{S}_{n}}^{2}}$=$\frac{1}{n+\frac{10}{n}}$=g(n),考查函數(shù)f(x)=$x+\frac{10}{x}$的單調(diào)性,x>0,即可得出.

解答 解:∵a1=1,an+1=-SnSn+1,
∴Sn+1-Sn=-SnSn+1,∴$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=1,
∴數(shù)列$\{\frac{1}{{S}_{n}}\}$是等差數(shù)列,首項(xiàng)為1,公差為1.
∴$\frac{1}{{S}_{n}}$=1+(n-1)=n.
∴Sn=$\frac{1}{n}$.
∴$\frac{n{{S}_{n}}^{2}}{1+10{{S}_{n}}^{2}}$=$\frac{n×\frac{1}{{n}^{2}}}{1+10×\frac{1}{{n}^{2}}}$=$\frac{n}{{n}^{2}+10}$=$\frac{1}{n+\frac{10}{n}}$=g(n),
考查函數(shù)f(x)=$x+\frac{10}{x}$的單調(diào)性,x>0,
可知:函數(shù)f(x)在$(0,\sqrt{10})$上單調(diào)遞減,在$(\sqrt{10},+∞)$上單調(diào)遞增.
又g(3)=$\frac{3}{19}$,g(4)=$\frac{2}{13}$,∴g(3)>g(4).
∴使$\frac{n{{S}_{n}}^{2}}{1+10{{S}_{n}}^{2}}$取得最大值時(shí)n的值為3.
故答案為:3.

點(diǎn)評 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列通項(xiàng)公式、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)y=$\sqrt{2x-{x^2}}$的單調(diào)遞減區(qū)間是[1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.△ABC中,a,b,c分別是∠A,∠B,∠C的對邊,且a,b,c成等差數(shù)列.
(1)求∠B的最大值B0;
(2)在(1)之下,求f(x)=sin(2x+B0)+$\sqrt{3}$cos(2x+B0)在[0,π]上的單調(diào)遞減區(qū)間與最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求最值:
(1)已知a>0,b>0,且4a+b=1,求ab的最大值;
(2)已知x>0,y>0,且x+y=1,求$\frac{4}{x}$+$\frac{9}{y}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A⊆{1,2,3,4,5},且A∩{1,2,3}={1,2},則滿足條件的集合A的個(gè)數(shù)是(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若函數(shù)y=|log22x|在區(qū)間(0,a]上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.A,B是△ABC的兩個(gè)內(nèi)角,p:sinAsinB<cosAcosB;q:△ABC是鈍角三角形.則p是q成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若全集U=R集合A={x|1<x≤3},則∁UA=( 。
A.{x|x<1或x≥3}B.{x|x≤1或x>3}C.{x|x<1或x>3}D.{x|x≤1或x≥3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=loga|x+1|(a>0且a≠1),當(dāng)x∈(0,1)時(shí),恒有f(x)<0成立,則函數(shù)g(x)=loga(-$\frac{3}{2}$x2+ax)的單調(diào)遞減區(qū)間是(0,$\frac{a}{3}$].

查看答案和解析>>

同步練習(xí)冊答案