17.已知函數(shù)f(x)=loga|x+1|(a>0且a≠1),當(dāng)x∈(0,1)時,恒有f(x)<0成立,則函數(shù)g(x)=loga(-$\frac{3}{2}$x2+ax)的單調(diào)遞減區(qū)間是(0,$\frac{a}{3}$].

分析 根據(jù)對數(shù)函數(shù)的性質(zhì)可得當(dāng)x∈(0,1)時,|x+1|>1,但loga|x+1|<0,故由對數(shù)函數(shù)的圖象知,0<a<1.恒有f(x)<0成立,由-$\frac{3}{2}$x2+ax>0,解得0<x<$\frac{2}{3}$a,在根據(jù)復(fù)合函數(shù)的單調(diào)性即可得到答案.

解答 解:由題意:當(dāng)x∈(0,1)時,|x+1|>1,但loga|x+1|<0,故由對數(shù)函數(shù)的圖象知,0<a<1;
∵對數(shù)函數(shù)的真數(shù)要大于0,即-$\frac{3}{2}$x2+ax>0,解得:0<x<$\frac{2}{3}$a,
令t=-$\frac{3}{2}$x2+ax,開口向下,對稱軸x=$\frac{a}{3}$,
當(dāng)x在(0,$\frac{a}{3}$]時增函數(shù),x在[$\frac{a}{3}$,$\frac{2a}{3}$)時減函數(shù).
根據(jù)復(fù)合函數(shù)的單調(diào)性“同增異減”可得:
x∈(0,1)時,恒有f(x)<0成立時,函數(shù)g(x)=loga(-$\frac{3}{2}$x2+ax)的單調(diào)遞減區(qū)間是(0,$\frac{a}{3}$].
故答案為:(0,$\frac{a}{3}$].

點評 本題考查了對數(shù)函數(shù)的性質(zhì)的運用以及復(fù)合函數(shù)的單調(diào)性.屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)Sn是數(shù)列{an}的前n項和,且a1=1,an+1=-SnSn+1,則使$\frac{n{{S}_{n}}^{2}}{1+10{{S}_{n}}^{2}}$取得最大值時n的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.定義在[-3,3]上的增函數(shù)f(x)滿足f(-x)=-f(x),且f(m+1)+f(2m-1)>0,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=$\frac{{{x^2}-1}}{{{x^2}+2}}$在(-1,+∞)上的值域為[$-\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx,(a,b為常數(shù),且a≠0)滿足條件f(2-x)=f(x-1),且方程f(x)=x有兩個相等的實根.
(1)求f(x)的解析式;
(2)設(shè)g(x)=kx+1,若F(x)=g(x)-f(x),求F(x)在[1,2]上的最小值;
(3)是否存在實數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]與[2m,2n],若存在,求出m,n的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=x2B.$y={x^{\frac{1}{2}}}$C.y=x-1D.y=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)點P為等邊△ABC所在平面內(nèi)的一點,滿足$\overrightarrow{CP}=\overrightarrow{CB}+2\overrightarrow{CA}$,若AB=2,則$\overrightarrow{PA}•\overrightarrow{PB}$的值是12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某中學(xué)經(jīng)市政府批準(zhǔn)建分校,建分校工程分三期完成,確定由甲、乙兩家建筑公司承建此工程.規(guī)定每期工程僅由兩公司之一獨立承建,必須在前一期工程完工后再開始后一期工程.已知甲公司獲得第一期、第二期、第三期工程承包權(quán)的概率分別為$\frac{2}{3}$,$\frac{1}{2}$,$\frac{1}{4}$.
(Ⅰ)求甲公司至少獲得一期工程的概率;
(Ⅱ)求甲公司獲得工程期數(shù)比乙公司獲得工程期數(shù)多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.從4名男同學(xué)、3名女同學(xué)中選3名同學(xué)組成一個小組,要求其中男、女同學(xué)都有,則共有30種不同的選法.(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊答案