已知函數(shù)數(shù)學公式,則 f(f(1))的值為


  1. A.
    2
  2. B.
    2e
  3. C.
    1
  4. D.
    log34
C
分析:先求f(1)=2,然后再求解f(2)即可
解答:由題意可得,f(1)=2
f(f(1))=f(2)=log33=1
故選C
點評:本題主要考查了分段函數(shù)的函數(shù)值的求解,解題的關鍵是明確函數(shù)的對應關系
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

12、已知定義在R上的奇函數(shù)f(x),滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

10、已知定義在R上的奇函數(shù)f(x),滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

11、已知定義在R上的奇函數(shù)f(x),滿足f(x-4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x),滿足f(x)=-f(x+4),且在區(qū)間[0,2]上是增函數(shù),則f(-17),f(27),f(64)的大小關系從小到大的排列順序為
f(-17),f(64),f(27)
f(-17),f(64),f(27)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x),滿足f(x+4)=-f(x),且在區(qū)間[0,2]上是增函數(shù),則(  )
A、f(-10)<f(3)<f(40)B、f(40)<f(3)<f(-10)C、f(3)<f(40)<f(-10)D、f(-10)<f(40)<f(3)

查看答案和解析>>

同步練習冊答案