分析 (1)由a1=1,an+1=an+λn,可得a2=1+λ,a3=1+3λ,a4=1+6λ,由a4=7=1+6λ,解得λ.可得an+1-an=n.利用“累加求和”方法與等差數(shù)列的求和公式即可得出.
(2)${b_n}=\frac{1}{{{a_{n+1}}-1}}$=$\frac{2}{n(n+1)}$=$2(\frac{1}{n}-\frac{1}{n+1})$,利用“裂項(xiàng)求和”方法與數(shù)列的單調(diào)性即可得出.
解答 解:(1)∵a1=1,an+1=an+λn,∴a2=1+λ,a3=1+3λ,a4=1+6λ,
由a4=7=1+6λ,解得λ=1.∴an+1=an+n.∴an+1-an=n.
∴a1=1,a2=a1+1,a3=a2+2,a4=a3+3,‥‥an=an-1+(n-1),
以上各式累加得:an=1+1+2+3+4+…+(n-1)=$1+\frac{(n-1)(1+n-1)}{2}$=$\frac{{{n^2}-n+2}}{2}$.
(2)${b_n}=\frac{1}{{{a_{n+1}}-1}}$=$\frac{2}{n(n+1)}$=$2(\frac{1}{n}-\frac{1}{n+1})$,
∴Tn=b1+b2+b3+b4+…+bn=$2(\frac{1}{1}-\frac{1}{2})+2(\frac{1}{2}-\frac{1}{3})+2(\frac{1}{3}-\frac{1}{4})+…+2(\frac{1}{n}-\frac{1}{n+1})$
=$2(\frac{1}{1}-\frac{1}{n+1})$,
∴bn<2.
點(diǎn)評 本題考查了“裂項(xiàng)求和方法”、等差數(shù)列的通項(xiàng)公式與求和公式、“累加求和”方法、數(shù)列遞推關(guān)系、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=-8,b=-10 | B. | a=-4,b=-9 | C. | a=-1,b=9 | D. | a=-1,b=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com