6.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年銷售量y(單位:千元)對(duì)年銷售量y(單位:t)和年利潤z(單位:千元)的影響,對(duì)近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$(xi-$\overline{x}$)2$\sum_{i=1}^{8}$(wi-$\overline{w}$)2$\sum_{i=1}^{8}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{8}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
其中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(Ⅰ)根據(jù)散點(diǎn)圖判斷,y=a+bx與y=c+d$\sqrt{x}$哪一個(gè)適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由)
(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(Ⅲ)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x.根據(jù)(Ⅱ)的結(jié)果回答下列問題:
(i)年宣傳費(fèi)x=49時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?
(ii)年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?
附:對(duì)于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計(jì)分別為,$\stackrel{∧}{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\stackrel{∧}{α}$=$\overline{v}$-$\stackrel{∧}{β}$$\overline{u}$.

分析 (Ⅰ)根據(jù)散點(diǎn)圖,即可判斷出;
(Ⅱ)先建立中間量w=$\sqrt{x}$,建立y關(guān)于w的線性回歸方程,根據(jù)公式求出w,問題得以解決;
(Ⅲ)(i)年宣傳費(fèi)x=49時(shí),代入到回歸方程,計(jì)算即可,
(ii)求出預(yù)報(bào)值得方程,根據(jù)函數(shù)的性質(zhì),即可求出.

解答 解:(Ⅰ)由散點(diǎn)圖可以判斷,y=c+d$\sqrt{x}$適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型;
(Ⅱ)令w=$\sqrt{x}$,先建立y關(guān)于w的線性回歸方程,由于d=$\frac{108.6}{1.6}$=68,
c=$\overline{y}$-d$\overline{w}$=563-68×6.8=100.6,
所以y關(guān)于w的線性回歸方程為y=100.6+68w,
因此y關(guān)于x的回歸方程為y=100.6+68$\sqrt{x}$,
(Ⅲ)(i)由(Ⅱ)知,當(dāng)x=49時(shí),年銷售量y的預(yù)報(bào)值y=100.6+68$\sqrt{49}$=576.6,
年利潤z的預(yù)報(bào)值z(mì)=576.6×0.2-49=66.32,
(ii)根據(jù)(Ⅱ)的結(jié)果可知,年利潤z的預(yù)報(bào)值z(mì)=0.2(100.6+68$\sqrt{x}$)-x=-x+13.6$\sqrt{x}$+20.12,
當(dāng)$\sqrt{x}$=$\frac{13.6}{2}$=6.8時(shí),年利潤的預(yù)報(bào)值最大.

點(diǎn)評(píng) 本題主要考查了線性回歸方程和散點(diǎn)圖的問題,準(zhǔn)確的計(jì)算是本題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=Asin(ωx+φ)+b(A>0,ω>0,|φ|<$\frac{π}{2}$)的一部分圖象如圖所示,則(  )
A.f(x)=3sin(2x-$\frac{π}{6}$)+1B.f(x)=2sin(3x+$\frac{π}{3}$)+2C.f(x)=2sin(3x-$\frac{π}{6}$)+2D.f(x)=2sin(2x+$\frac{π}{6}$)+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.定義:若曲線τ由橢圓T1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)和橢圓T2:$\frac{{y}^{2}}{^{2}}$+$\frac{{x}^{2}}{{c}^{2}}$=1(b>c>0)組成,當(dāng)a、b、c成等比數(shù)列時(shí),稱曲線τ為“貓眼曲線”.若“貓眼曲線”τ過點(diǎn)P(0,-$\sqrt{2}$),且a、b、c的公比為$\frac{\sqrt{2}}{2}$.
(1)求“貓眼曲線”τ的方程;
(2)任作斜率為k(k≠0)且不過原點(diǎn)的直線與該曲線τ相交,且交橢圓T1所得弦的中點(diǎn)為M,交橢圓T2所得弦的中點(diǎn)為N,設(shè)OM、ON的斜率分別是kOM、kON,求$\frac{{k}_{OM}}{{k}_{ON}}$的值;
(3)若斜率為1的直線l交橢圓T1于點(diǎn)A、B,交橢圓T2于點(diǎn)C、D,且滿足$\frac{|AB|}{|CD|}$=2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某園林基地培育了一種新觀賞植物,經(jīng)過一年的生長發(fā)育,技術(shù)人員從中抽取了部分植株的高度(單位:厘米)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計(jì),按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本高度的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(Ⅰ)求樣本容量n和頻率分布直方圖中x、y的值;
(Ⅱ)在選取的樣本中,從高度在80厘米以上以上(含80厘米)的植株中隨機(jī)抽取2株,求所抽取的2株中至少有一株高度在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)無蓋的正方體盒子展開后的平面圖如圖所示,A、B、C是展開圖上的三點(diǎn),則在正方體盒子中,∠ABC的度數(shù)是( 。
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知不等式x2-3ax+b>0的解集為{x|x<1或x>2}.
(Ⅰ)求 a,b的值;
(Ⅱ)解不等式(x-b)(x-m)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)$\overrightarrow{a}$、$\overrightarrow$滿足:|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$⊥($\overrightarrow{a}$-$\overrightarrow$),則$\overrightarrow{a}$、$\overrightarrow$夾角大小為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若過點(diǎn)A(2,-2)和點(diǎn)B(5,0)的直線與過點(diǎn)P(2m,1)和點(diǎn)Q(-1,-m)的直線平行,則m的值為( 。
A.-1B.1C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,△ABC中,D為BC的中點(diǎn),G為AD的中點(diǎn),過點(diǎn)G任作一直線MN分別交AB、AC于M、N兩點(diǎn).若$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,則$\frac{1}{x}$+$\frac{1}{y}$=4.

查看答案和解析>>

同步練習(xí)冊(cè)答案