【題目】如圖,正三棱柱柱中底面邊長為2,高為3DE分別在上,且.

1AE上是否存在一點(diǎn)P,使得?若不存在,說明理由;若存在,指出P的位置;

2)求點(diǎn)到截面ADE的距離.

【答案】1)存在;PAE中點(diǎn).(2

【解析】

1)取AE中點(diǎn)P,AC中點(diǎn)Q,連接PQDP、BQ,證明四邊形BDPQ為平行四邊形推出,再證明,即可得出結(jié)論;(2)求出,利用等體積法表示出,即可求得到截面ADE的距離.

1PAE中點(diǎn)時(shí)

如圖所示,取AE中點(diǎn)P,AC中點(diǎn)Q,連接PQDP、BQ

易得,,

因?yàn)?/span>P、Q分別為AE、AC中點(diǎn),所以,

所以BD=QP,則四邊形BDPQ為平行四邊形,所以,

由正棱柱知:ABC,因?yàn)?/span>平面ABC,

所以,又,平面,平面,

所以,

;

2)設(shè)點(diǎn)到截面ADE的距離為d,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列是等比數(shù)列,公比大于0,前項(xiàng)和,是等差數(shù)列,已知,,

(Ⅰ)求數(shù)列的通項(xiàng)公式,;

(Ⅱ)設(shè)的前項(xiàng)和為

(ⅰ)求;

(ⅱ)若,記,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對二人進(jìn)行了測驗(yàn),根據(jù)測驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是(

A.甲的數(shù)據(jù)分析素養(yǎng)高于乙

B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)

C.乙的六大素養(yǎng)中邏輯推理最差

D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l過拋物線的焦點(diǎn)F且交拋物線于AB兩點(diǎn),直線l與圓交于C,D兩點(diǎn),若,設(shè)直線l的斜率為k,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人,為了解學(xué)生本學(xué)期課外閱讀時(shí)間,現(xiàn)采用分成抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們課外閱讀時(shí)間,然后按初中學(xué)生高中學(xué)生分為兩組,再將每組學(xué)生的閱讀時(shí)間(單位:小時(shí))分為5組:[0,10),[10,20),[20,30),[3040),[4050],并分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

1)寫出的值;試估計(jì)該校所有學(xué)生中,閱讀時(shí)間不小于30個(gè)小時(shí)的學(xué)生人數(shù);
2)從閱讀時(shí)間不足10個(gè)小時(shí)的樣本學(xué)生中隨機(jī)抽取3人,并用表示其中初中生的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

,曲線

過點(diǎn)

,且在點(diǎn)

處的切線方程為

.

(1)求

的值;

(2)證明:當(dāng)

時(shí),

;

(3)若當(dāng)

時(shí),

恒成立,求實(shí)數(shù)

的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為4的菱形,∠BAD=60°,對角線ACBD相交于點(diǎn)O,四邊形ACFE為梯形,EF//AC,點(diǎn)E在平面ABCD上的射影為OA的中點(diǎn),AE與平面ABCD所成角為45°.

(Ⅰ)求證:BD⊥平面ACF

(Ⅱ)求平面DEF與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐PABC中,平面PBC⊥平面ABC,∠ACB90°,BCPC2,若ACPB,則三棱錐PABC體積的最大值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,底面為等邊三角形,E,F分別為,的中點(diǎn),,.

1)證明:平面;

2)求直線與平面所成角的大小.

查看答案和解析>>

同步練習(xí)冊答案