若函數(shù)y=f(x)在區(qū)間(a,b)的零點(diǎn)按精確度為ε求出的結(jié)果與精確到ε求出的結(jié)果可以相等,則稱函數(shù)y=f(x)在區(qū)間(a,b)的零點(diǎn)為“和諧零點(diǎn)”.試判斷函數(shù)f(x)=x3+x2-2x-2在區(qū)間(1,1.5)上,按ε=0.1用二分法逐次計(jì)算,求出的零點(diǎn)是否為“和諧零點(diǎn)”.(參考數(shù)據(jù)f(1.25)=-0.984,f(1.375)=-0.260,f(1.438)=0.165,f(1.4065)=-0.052)
考點(diǎn):二分法求方程的近似解
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:此題考查的是二分法求方程的近似解的問題.在解答的時(shí)候可以根據(jù)題目所給的信息逐一進(jìn)行計(jì)算函數(shù)值,結(jié)合數(shù)據(jù)的特點(diǎn)即可獲得問題的解答.
解答: 解:∵f(1.438)=0.165,f(1.4065)=-0.052,
∴精確到ε求出的結(jié)果為1.4,
又精確度ε=0.1,可知|1.438-1.375|=0.063<0.1.
∴函數(shù)零點(diǎn)的近似值為1.438或1.375.
∴零點(diǎn)不是“和諧零點(diǎn)”
點(diǎn)評(píng):此題考查的是二分法求方程的近似解的問題.在解答的過程當(dāng)中充分體現(xiàn)了同學(xué)們的運(yùn)算能力以及對(duì)二分法法的應(yīng)用.值得同學(xué)們體會(huì)反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,其前n項(xiàng)和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4-b4=10.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)記Tn=a1b1+a2b2+…+anbn,n∈N*,求Tn(n∈N*,n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,程序框圖的輸出的各數(shù)組成數(shù)列{an}.

(1)求{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)已知{bn}是等差數(shù)列,且b1=a2,b3=a1+a2+a3,求數(shù)列{an•bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x=3n+1,n∈Z},B={x|x=3n+2,n∈Z},M={x|x=6n+3,n∈Z},對(duì)于任意a∈A,b∈B,是否一定有a+b=m且m∈M?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正三棱錐的底面邊長為6,高為
3
,求這個(gè)三棱錐的全面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=ln(1+ax)-
ax
ax+1
的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:|x-3|≤2,q:(x-m+1)•(x-m-1)≤0,若?p是?q的充分而不必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin2(x+
π
4
)-
3
cos2x,x∈[
π
4
,
π
2
].設(shè)x=α?xí)rf(x)取到最大值.
(1)求f(x)的最大值及α的值;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,A=α-
π
12
,且sinBsinC=sin2A,求b-c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
2
<α<β<
π
2
,求α-2β的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案