已知p:|x-3|≤2,q:(x-m+1)•(x-m-1)≤0,若?p是?q的充分而不必要條件,求實數(shù)m的取值范圍.
考點:必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:根據(jù)不等式的性質(zhì)求解命題p,q以及¬p和¬q,根據(jù)充分條件和必要條件的定義即可得到結(jié)論.
解答: 解 由題意p:-2≤x-3≤2,
∴1≤x≤5.
∴¬p:x<1或x>5.
q:m-1≤x≤m+1,
∴¬q:x<m-1或x>m+1.
又¬p是¬q的充分而不必要條件,
∴2≤m≤4,
即實數(shù)m的取值范圍是[2,4].
點評:本題主要考查充分條件和必要條件的應用,根據(jù)不等式的性質(zhì)求解p,q以及¬p和¬q的等價條件是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知集合A={1,3,-x2},B={1,x+2},是否存在實數(shù)x使得B∪(∁AB)=A成立?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}的前n項和為Sn,且an=
n+1
2
1
S1
+
1
S2
+…+
1
Sn
)(n∈N*
①求a1,a2,a3;
②求數(shù)列{an}的通項公式an;
③若數(shù)列{bn}滿足b1=1,bn=
1
bn-1
+
1
an
(n≥2),求證:bn2<2+2(
1
2
b1+
1
3
b2+
1
4
b3+…+
1
n
bn-1)(n≥2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)y=f(x)在區(qū)間(a,b)的零點按精確度為ε求出的結(jié)果與精確到ε求出的結(jié)果可以相等,則稱函數(shù)y=f(x)在區(qū)間(a,b)的零點為“和諧零點”.試判斷函數(shù)f(x)=x3+x2-2x-2在區(qū)間(1,1.5)上,按ε=0.1用二分法逐次計算,求出的零點是否為“和諧零點”.(參考數(shù)據(jù)f(1.25)=-0.984,f(1.375)=-0.260,f(1.438)=0.165,f(1.4065)=-0.052)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax-1-1(a>0且a≠1)
(1)若函數(shù)y=f(x)的圖象恒過定點P,求點P的坐標;
(2)若f(lga)=99,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={y|y>a2+1或y<a},B={y|2≤y≤4},若A∩B≠∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(ax2+2x+3)
(1)當a=-1時,求該函數(shù)的定義域和值域;
(2)若函數(shù)f(x)的定義域為R,求實數(shù)a的取值范圍;
(3)如果f(x)≥1在區(qū)間[0,1]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設p:實數(shù)x滿足x2-x-6>0或x2+2x-8≤0,q:實數(shù)x滿足x2-3ax+2a2<0,且¬p是¬q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明:函數(shù)f(x)=-
1
x-1
在區(qū)間(-∞,0)上是增函數(shù).

查看答案和解析>>

同步練習冊答案