設(shè)函數(shù)f(x)=x3-3ax+b(a≠0).若曲線y=f(x)在點(2,f(2))處與直線y=8相切,則ab的值為 ______.
∵f(x)=x3-3ax+b,
∴f'(x)=3x2-3a,當x=2時,f'(2)=12-3a
得切線的斜率為12-3a,所以k=12-3a;
∵在點(2,f(2))處與直線y=8相切,
∴12-3a=0,a=4,
且f(2)=8,
∴23-12×2+b=8,∴b=24,
所以ab的值為:4×24=96,
故答案為:96.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

18、設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖象與直線12x+y-1=0相切于點(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2+x+1,a∈R.
(1)若x=1時,函數(shù)f(x)取得極值,求函數(shù)f(x)的圖象在x=-1處的切線方程;
(2)若函數(shù)f(x)在區(qū)間(
12
,1)
內(nèi)不單調(diào),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x3+ax2-a2x+5(a>0)
(1)當函數(shù)f(x)有兩個零點時,求a的值;
(2)若a∈[3,6],當x∈[-4,4]時,求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x3-3x2-9x-1.求:
(Ⅰ)函數(shù)在(1,f(1))處的切線方程;
(Ⅱ)函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=x3•cosx+1,若f(a)=5,則f(-a)=
 

查看答案和解析>>

同步練習冊答案