已知拋物線過頂點兩弦OAOB,求以OA、OB為直徑的兩圓的另一交點Q的軌跡.

答案:略
解析:

解:設(shè),則以OA為直徑的圓的方程為,以OB為直徑的圓方程為,即為方程的兩根.

.又OAOB,∴

∴另一交點Q的軌跡是以(p,0)為圓心,p為半徑的圓.


提示:


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知拋物線y2=2px,過頂點的兩弦OA和OB互相垂直,求以O(shè)A、OB為直徑的兩圓的另一個交點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點為坐標(biāo)原點,橢圓C′的對稱軸是坐標(biāo)軸,拋物線C在x軸上的焦點恰好是橢圓C′的焦點
(Ⅰ)若拋物線C和橢圓C′都經(jīng)過點M(1,2),求拋物線C和橢圓C′的方程;
(Ⅱ)已知動直線l過點p(3,0),交拋物線C于A,B兩點,直線l′:x=2被以AP為直徑的圓截得的弦長為定值,求拋物線C的方程;
(Ⅲ)在(Ⅱ)的條件下,分別過A,B的拋物線C的兩條切線的交點E的軌跡為D,直線AB與軌跡D交于點F,求|EF|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦長為
2

(Ⅰ)求p的值;
(Ⅱ)若直角三角形ABC的三個頂點在拋物線L上,且直角頂點B的橫坐標(biāo)為1,過點A、C分別作拋物線L的切線,兩切線相交于點D,直線AC與y軸交于點E,當(dāng)直線BC的斜率在[3,4]上變化時,直線DE斜率是否存在最大值,若存在,求其最大值和直線BC的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年福建省漳州一中高中畢業(yè)班質(zhì)量檢查(理) 題型:解答題

 (本小題滿分13分)

已知拋物線的頂點為坐標(biāo)原點,橢圓的對稱軸是坐標(biāo)軸,拋物線軸上的焦點恰好是橢圓的焦點

(Ⅰ)若拋物線和橢圓都經(jīng)過點,求拋物線和橢圓的方程;

(Ⅱ)已知動直線過點,交拋物線兩點,直線被以為直徑的圓截得的弦長為定值,求拋物線的方程;

(Ⅲ)在(Ⅱ)的條件下,分別過的拋物線的兩條切線的交點的軌跡為,直線與軌跡交于點,求的最小值。

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案