11.已知函數(shù)f(x)=x-1+$\frac{a}{{e}^{x}}$.
(Ⅰ)若函數(shù)f(x) 在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(Ⅱ)求函數(shù)f(x)的極值.

分析 (Ⅰ)先求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義即可求出,
(Ⅱ)先求導(dǎo),再根據(jù)導(dǎo)數(shù)和函數(shù)極值的關(guān)系即可求出.

解答 解:(Ⅰ)由f(x)=x-1+$\frac{a}{{e}^{x}}$,得f′(x)=1-$\frac{a}{{e}^{x}}$  
由函數(shù)f(x) 在點(diǎn)(1,f(1))處的切線平行于x軸,得  f′(1)=1-$\frac{a}{e}$=0,解得a=e 
(Ⅱ)f′(x)=1-$\frac{a}{{e}^{x}}$  
①當(dāng)a≤0時(shí),f′(x)>0,f(x)在R上為增函數(shù),f(x)無極值  
②當(dāng)a>0時(shí),令f′(x)=0,解得x=lna,
∴x∈(-∞,lna)時(shí),f′(x)>0,x∈(lna,+∞)時(shí),f′(x)<0,
∴函數(shù)f(x)在(-∞,lna)上單調(diào)遞減;在(lna,+∞)上單調(diào)遞增.   
∴f(x)在x=lna處取得極小值,且極小值為f(lna)=lna,無極大值
綜上,當(dāng)a≤0時(shí),函數(shù)f(x)無極值;
當(dāng)a>0時(shí),f(x)在x=lna處取得極小值lna,無極大值.

點(diǎn)評 本題考查了導(dǎo)數(shù)和函數(shù)的極值的關(guān)系,關(guān)鍵是分類討論,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若{an}是等差數(shù)列,首項(xiàng)a1>0,a1003+a1004>0,a1003•a1004<0,則使前n項(xiàng)和Sn>0成立的最大自然數(shù)n是(  )
A.2005B.2006C.2007D.2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知$\overrightarrow m=(a,-2)$,$\overrightarrow n=(1,1-a)$,且$\overrightarrow m$與$\overrightarrow n$方向相反,則實(shí)數(shù)a的值為( 。
A.-1B.$\frac{2}{3}$C.2D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知橢圓的方程為$\frac{{y}^{2}}{9}$+$\frac{{x}^{2}}{16}$=1,則此橢圓的離心率為$\frac{\sqrt{7}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知橢圓E:$\frac{x^2}{18}+\frac{y^2}{9}$=1,斜率為1的直線交E于A,B兩點(diǎn),若AB的中點(diǎn)為P,O為坐標(biāo)原點(diǎn),則直線OP的斜率為( 。
A.-1B.$-\frac{1}{2}$C.$-\frac{1}{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=4+loga(x+1)的圖象恒過定點(diǎn)A,則點(diǎn)A的坐標(biāo)是(  )
A.(0,4)B.(1,4)C.(2,4)D.(0,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=3x,且f-1(18)=a+2,g(x)=3ax-4x的定義域?yàn)閰^(qū)間[0,1],求:
(1)g(x)的解析式
(2)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若函數(shù)f(x)=2sin(ωx+$\frac{π}{3}$)(ω>0)的圖象與x軸相鄰兩個(gè)交點(diǎn)間的距離為2,則實(shí)數(shù)ω的值為( 。
A.$\frac{1}{2}$B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知復(fù)數(shù)Z滿足Z•(1-2i)=5i,則復(fù)數(shù)Z在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案