精英家教網 > 高中數學 > 題目詳情
[2014·嘉興聯(lián)考]為了判斷高中三年級學生選修文科是否與性別有關,現(xiàn)隨機抽取50名學生,得到如下2×2列聯(lián)表:
 
理科
文科
合計

13
10
23

7
20
27
合計
20
30
50
 
已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根據表中數據,得到K2≈4.844,則認為選修文科與性別有關系出錯的可能性約為______.
5%
由K2=4.844>3.841.
故認為選修文科與性別有關系出錯的可能性約為5%.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,從參加環(huán)保知識競賽的學生中抽出60名,將其成績(均為整數)整理后畫出的頻率分布直方圖如下:請觀察圖形,求解下列問題:

(1)79.5~89.5這一組的頻率、頻數分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

某校開設街舞選修課程,在選修的學生中,有男生28人,女生21人.若采用分層抽樣的方法從中抽取一個容量為14的樣本,則應抽取的女生人數為( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調查,調查結果如下表所示:

(1)根據表中數據,問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
(2)已知在被調查的北方學生中有5名數學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若對于預報變量y與解釋變量x的10組統(tǒng)計數據的回歸模型中,計算R2=0.95,又知殘差平方和為120.55,那么的值為( )
A.241.1B.245.1C.2411D.2451

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(13分)(2011•廣東)在某次測驗中,有6位同學的平均成績?yōu)?5分.用xn表示編號為n(n=1,2,…,6)的同學所得成績,且前5位同學的成績如下:
編號n
1
2
3
4
5
成績xn
70
76
72
70
72
(1)求第6位同學的成績x6,及這6位同學成績的標準差s;
(2)從前5位同學中,隨機地選2位同學,求恰有1位同學成績在區(qū)間(68,75)中的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

以下四個命題中:
①從勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣;
②兩個隨機變量的線性相關性越強,相關系數的絕對值越接近于1;
③某項測量結果ξ服從正態(tài)分布,則;
④對于兩個分類變量X與Y的隨機變量k2的觀測值k來說,k越小,判斷“X與Y有關系”的把握程度越大.以上命題中其中真命題的個數為()
A.4 B.3C.2  D.1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

(2014·黃石模擬)根據下面的列聯(lián)表
 
嗜酒
不嗜酒
總計
患肝病
7 775
42
7 817
未患肝病
2 099
49
2 148
總計
9 874
91
9 965
 
得到如下幾個判斷:①在犯錯誤的概率不超過0.001的前提下認為患肝病與嗜酒有關;②在犯錯誤的概率不超過0.01的前提下認為患肝病與嗜酒有關;③認為患肝病與嗜酒有關的出錯的可能小于1%;④認為患肝病與嗜酒有關的出錯的可能為10%.其中正確命題的個數為(  )
A.0          B.1         C.2          D.3

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分 )
2013年國慶期間,高速公路車輛較多.某調查公司在一服務區(qū)從七座以下小型汽車中按進服務區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進行詢問調查,將他們在某段高速公路的車速(km/h)分成六段,,,,,后得到如下圖的頻率分布直方圖.
(1)此調查公司在采樣中,用到的是什么抽樣方法?
(2)求這40輛小型車輛車速的中位數的估計值;
(3)若從車速在的車輛中任抽取3輛,求抽出的3輛車中車速在的車輛數的分布列及數學期望.

查看答案和解析>>

同步練習冊答案