設(shè)b>0,橢圓方程為,拋物線方程為x2=8(y-b).如圖所示,過點(diǎn)F(0,b+2)作x軸的平行線,與拋物線在第一象限的交點(diǎn)為G,已知拋物線在點(diǎn)G的切線經(jīng)過橢圓的右焦點(diǎn)F1.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)A,B分別是橢圓長軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請指出共有幾個這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo)).
(1)由得, 當(dāng)得,G點(diǎn)的坐標(biāo)為,,, 過點(diǎn)G的切線方程為即, 令得,點(diǎn)的坐標(biāo)為,由橢圓方程得點(diǎn)的坐標(biāo)為, 即,即橢圓和拋物線的方程分別為和; (2)過作軸的垂線與拋物線只有一個交點(diǎn),以為直角的只有一個, 同理以為直角的只有一個. 若以為直角,設(shè)點(diǎn)坐標(biāo)為,、兩點(diǎn)的坐標(biāo)分別為和, . 關(guān)于的二次方程有一大于零的解,有兩解,即以為直角的有兩個, 因此拋物線上存在四個點(diǎn)使得為直角三角形. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
2b2 |
y2 |
b2 |
1 |
8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
2b2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)b>0,橢圓方程為,拋物線方程為.如圖4所示,過點(diǎn)F(0,b+2)作x軸的平行線,與拋物線在
第一象限的交點(diǎn)為G.已知拋物線在點(diǎn)G的切線經(jīng)
過橢圓的右焦點(diǎn).
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)A,B分別是橢圓長軸的左、右端點(diǎn),試探究在
拋物線上是否存在點(diǎn)P,使得△ABP為直角三角形?
若存在,請指出共有幾個這樣的點(diǎn)?并說明理由
(不必具體求出這些點(diǎn)的坐標(biāo)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)b>0,橢圓方程為,拋物線方程為。如圖所示,過點(diǎn)F(0,b + 2)作x軸的平行線,與拋物線在第一象限的交點(diǎn)為G。已知拋物線在點(diǎn)G的切線經(jīng)過橢圓的右焦點(diǎn)F1。
(1)求滿足條件的橢圓方程和拋物線方程;
(2)點(diǎn)G、所在的直線截橢圓的右下區(qū)域為D,
若圓C:與區(qū)域D有公共點(diǎn),求m的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年廣東省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com