【題目】已知橢圓:,過橢圓右焦點的最短弦長是,且點在橢圓上.

1)求該橢圓的標準方程;

2)設(shè)動點滿足:,其中,是橢圓上的點,直線與直線的斜率之積為,求點的軌跡方程并判斷是否存在兩個定點、,使得為定值?若存在,求出定值;若不存在,說明理由.

【答案】(1)(2)答案見解析

【解析】

(1)因為橢圓:,過橢圓右焦點的最短弦長是,可得.點在橢圓上,可得,即可求得答案;

(2)設(shè),,,則由得:,即,.,在橢圓上,結(jié)合已知,即可求得答案.

1橢圓,過橢圓右焦點的最短弦長是

,

在橢圓上

由①②解得: ,

化簡可得:

解得,,,

橢圓的標準方程為.

2)設(shè),,,則由

得:,

,.

,在橢圓上,

,,

,

設(shè),分別為直線,的斜率,

由題設(shè)條件知:,可得,

,

點是橢圓上的點,設(shè)該橢圓的左、右焦點為點,,

使得為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項和,對任意,都有為常數(shù)).

1)當時,求;

2)當時,

)求證:數(shù)列是等差數(shù)列;

)若數(shù)列為遞增數(shù)列且,設(shè),試問是否存在正整數(shù)(其中),使成等比數(shù)列?若存在,求出所有滿足條件的數(shù)組;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,橢圓上的點到左焦點的最小值為.

(1)求橢圓的方程;

(2)已知直線軸交于點,過點的直線交于兩點,點為直線上任意一點,設(shè)直線與直線交于點,記,,的斜率分別為,,,則是否存在實數(shù),使得恒成立?若是,請求出的值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年9月24日,阿貝爾獎和菲爾茲獎雙料得主、英國著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)界的震動.在1859年,德國數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素數(shù)個數(shù)》的論文并提出了一個命題,也就是著名的黎曼猜想.在此之前,著名數(shù)學(xué)家歐拉也曾研究過這個問題,并得到小于數(shù)字的素數(shù)個數(shù)大約可以表示為的結(jié)論.若根據(jù)歐拉得出的結(jié)論,估計10000以內(nèi)的素數(shù)的個數(shù)為(素數(shù)即質(zhì)數(shù),,計算結(jié)果取整數(shù))

A. 1089 B. 1086 C. 434 D. 145

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,橢圓經(jīng)過點.

(1)求橢圓的標準方程;

(2)設(shè)點是橢圓上的任意一點,射線與橢圓交于點,過點的直線與橢圓有且只有一個公共點,直線與橢圓交于,兩個相異點,證明:面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某快遞公司收取快遞費用的標準是:重量不超過的包裹收費10元;重量超過的包裹,除收費10元之外,超過的部分,每超出(不足,按計算)需要再收費5.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).

1)求這60天每天包裹數(shù)量的平均值和中位數(shù);

2)該公司從收取的每件快遞的費用中抽取5元作為前臺工作人員的工資和公司利潤,剩余的作為其他費用.已知公司前臺有工作人員3人,每人每天工資100元,以樣本估計總體,試估計該公司每天的利潤有多少元?

3)小明打算將四件禮物隨機分成兩個包裹寄出,且每個包裹重量都不超過,求他支付的快遞費為45元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,,平面平面.

(1)求證:平面;

(2)求平面與平面夾角的余弦值,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著城市地鐵建設(shè)的持續(xù)推進,市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計,某條地鐵線路運行時,發(fā)車時間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.

(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時間間隔t的值.

(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當發(fā)車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】東方商店欲購進某種食品(保質(zhì)期兩天),此商店每兩天購進該食品一次(購進時,該食品為剛生產(chǎn)的).根據(jù)市場調(diào)查,該食品每份進價元,售價元,如果兩天內(nèi)無法售出,則食品過期作廢,且兩天內(nèi)的銷售情況互不影響,為了了解市場的需求情況,現(xiàn)統(tǒng)計該產(chǎn)品在本地區(qū)天的銷售量如下表:

(視樣本頻率為概率)

(1)根據(jù)該產(chǎn)品天的銷售量統(tǒng)計表,記兩天中一共銷售該食品份數(shù)為,求的分布列與期望

(2)以兩天內(nèi)該產(chǎn)品所獲得的利潤期望為決策依據(jù),東方商店一次性購進份,哪一種得到的利潤更大?

查看答案和解析>>

同步練習(xí)冊答案