【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來(lái)越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車(chē)時(shí)間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車(chē)時(shí)間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.

(1)若平均每趟地鐵的載客人數(shù)不超過(guò)1500人,試求發(fā)車(chē)時(shí)間間隔t的值.

(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問(wèn)當(dāng)發(fā)車(chē)時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.

【答案】1t=4.2)當(dāng)發(fā)車(chē)時(shí)間間隔為7min時(shí),平均每趟地鐵每分鐘的凈收益最大,最大凈收益為260.

【解析】

1)分段考慮的解;

2)凈收益也是分段函數(shù),將其寫(xiě)出,分別考慮每段函數(shù)的在對(duì)應(yīng)的范圍內(nèi)的最大值.

: 19≤t≤15時(shí),1800≤1500,不滿足題意,舍去.

4≤t<9時(shí),1800-15(9-t)2≤1500,即

解得t≥9+2()t≤9-2

4≤t <9tN.

t=4.

(2)由題意可得

4≤t <9,t =7時(shí),=260()

9≤t≤15,t =9時(shí),=220()

:(1)若平均每趟地鐵的載客人數(shù)不超過(guò)1500人,發(fā)車(chē)時(shí)間間隔為4min.

(2)問(wèn)當(dāng)發(fā)車(chē)時(shí)間間隔為7min時(shí),平均每趟地鐵每分鐘的凈收益最大,最大凈收益為260.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,,,平面平面,為棱上一點(diǎn)(不與重合),平面交棱于點(diǎn).

1)求證:;

2)若二面角的余弦值為,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓:,過(guò)橢圓右焦點(diǎn)的最短弦長(zhǎng)是,且點(diǎn)在橢圓上.

1)求該橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)動(dòng)點(diǎn)滿足:,其中,是橢圓上的點(diǎn),直線與直線的斜率之積為,求點(diǎn)的軌跡方程并判斷是否存在兩個(gè)定點(diǎn),使得為定值?若存在,求出定值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓

)過(guò)點(diǎn)的直線被圓截得的弦長(zhǎng)為8,求直線的方程;

)當(dāng)取何值時(shí),直線與圓相交的弦長(zhǎng)最短,并求出最短弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知直線的方程為,曲線是以坐標(biāo)原點(diǎn)為頂點(diǎn),直線為準(zhǔn)線的拋物線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系.

(1)分別求出直線與曲線的極坐標(biāo)方程:

(2)點(diǎn)是曲線上位于第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),點(diǎn)是直線上位于第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),且,請(qǐng)求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面上動(dòng)點(diǎn)到點(diǎn)距離比它到直線距離少1.

(1)求動(dòng)點(diǎn)的軌跡方程;

(2)記動(dòng)點(diǎn)的軌跡為曲線,過(guò)點(diǎn)作直線與曲線交于兩點(diǎn),點(diǎn),延長(zhǎng),,與曲線交于,兩點(diǎn),若直線的斜率分別為,,試探究是否為定值?若為定值,請(qǐng)求出定值,若不為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某射手射擊1,擊中目標(biāo)的概率是0.9,他連續(xù)射擊4,且各次射擊是否擊中目標(biāo)相互之間沒(méi)有影響,有下列結(jié)論:

①他第3次擊中目標(biāo)的概率是0.9;

②他恰好擊中目標(biāo)3次的概率是;

③他至少擊中目標(biāo)1次的概率是;

④他至多擊中目標(biāo)1次的概率是

其中正確結(jié)論的序號(hào)是(

A.①②③B.①③

C.①④D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在棱長(zhǎng)為的正方體中,的中點(diǎn),上任意一點(diǎn),,上兩動(dòng)點(diǎn),且的長(zhǎng)為定值,則下面四個(gè)值中不是定值的是(

A.點(diǎn)到平面的距離B.直線與平面所成的角

C.三棱錐的體積D.二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若曲線在點(diǎn)處的切線方程是,求函數(shù)上的值域;

(2)當(dāng)時(shí),記函數(shù),若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案