已知f(x)是定義在(0,+∞)上的單調(diào)函數(shù),f′(x)是f(x)的導函數(shù),若對?x∈(0,+∞),都有f[f(x)-2x]=3,則方程f′(x)-
4
x
=0的解所在的區(qū)間是(  )
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,3)
考點:導數(shù)的運算
專題:導數(shù)的綜合應用
分析:由題意,可知f(x)-2X是定值,令t=f(x)-2X,得出f(x)=2X+t,再由f(t)=2t+t=3求出t的值,即可得出f(x)的表達式,求出函數(shù)的導數(shù),即可求出f′(x)-
4
x
=0的解所在的區(qū)間,即得正確選項.
解答: 解:由題意,可知f(x)-2X是定值,不妨令t=f(x)-2X,則f(x)=2X+t
又f(t)=2t+t=3,解得t=1
所以有f(x)=2X+1
所以f′(x)=2X•ln2,
令F(x)=f′(x)-
4
x
=2X•ln2-
4
x

可得F(1)=21•ln2-4<0,F(xiàn)(2)=22•ln2-2>0,
即F(x)=2X•ln2-
4
x
零點在區(qū)間(1,2)內(nèi)
所以f′(x)-
4
x
=0的解所在的區(qū)間是(1,2)
故選:C.
點評:本題考查導數(shù)運算法則,函數(shù)的零點,解題的關(guān)鍵是判斷出f(x)-2x是定值,本題考查了轉(zhuǎn)化的思想,將方程的根轉(zhuǎn)化為函數(shù)的零點來進行研究,降低了解題的難度.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

根據(jù)下面算法的程序框圖,當輸入n=6時,輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面向量
a
=(1,2),
b
=(-2,m),且
a
b
,則2
a
+3
b
=( 。
A、(8,16)
B、(-4,-8)
C、(-4,7)
D、(8,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sin2013°∈(  )
A、(-
3
2
,-
2
2
B、(-
2
2
,-
1
2
C、(
2
2
,
3
2
D、(
1
2
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若拋物線C:y2=2px(p>0)上一點到焦點和x軸的距離分別為5和3,則此拋物線的方程為( 。
A、y2=2x
B、y2=(
34
-4)x
C、y2=2x或y2=18x
D、y2=3x或y2=(
34
-4)x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若實數(shù)x,y滿足約束條件
x≥1
y≥2x
2x+y-8≤0
,目標函數(shù)z=x+ay(a>0)取得最大值的最優(yōu)解有無數(shù)個,則z的最小值為( 。
A、2B、3C、5D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)0<a<b,且f(x)=
1+
1+x
x
,則下列大小關(guān)系式成立的是(  )
A、f (a)<f (
a+b
2
)<f (
ab
B、f (
a+b
2
)<f (b)<f (
ab
C、f (
ab
)<f (
a+b
2
)<f (a)
D、f (b)<f (
a+b
2
)<f (
ab

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某藥廠測試一種新藥的療效,隨機選擇600名志愿者服用此藥,結(jié)果如下:
治療效果 病情好轉(zhuǎn) 病情無明顯變化 病情惡化
人數(shù) 400 100 100
(1)若另有一病人服用此藥,請估計該病人病情好轉(zhuǎn)的概率;
(2)現(xiàn)從服用此藥的600名志愿者中選擇6人作進一步數(shù)據(jù)分析,若在三種療效的志愿者中各取2人,這種抽樣是否合理?若不合理,應該如何抽樣?(請寫出具體人數(shù)安排)
(3)在選出作進一步數(shù)據(jù)分析的6人中,任意抽取2人參加藥品發(fā)布會,求抽取的2人中有病情惡化的志愿者的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

為了解某校學生參加某項測試的情況,從該校學生中隨機抽取了6位同學,這6位同學的成績(分數(shù))如莖葉圖所示.
(1)求這6位同學成績的平均數(shù)和標準差;
(2)從這6位同學中隨機選出兩位同學來分析成績的分布情況,求這兩位同學中恰有一位同學成績低于平均分的概率.

查看答案和解析>>

同步練習冊答案