【題目】如圖所示,正方形上連接等腰直角三角形,直角三角形上再連接正方形……如此無限重復(fù)下去,設(shè)正方形面積為,三角形面積為.當?shù)谝粋正方形的邊長為2時,則這些正方形和三角形的面積的總和為______.


【答案】10

【解析】

先由題意,求出,,得到正方形的面積構(gòu)成以為首項,以為公比的等比數(shù)列,三角形的面積構(gòu)成以為首項,以為公比的等比數(shù)列,根據(jù)等比數(shù)列的前項和公式,以及極限的運算法則,即可得出結(jié)果.

因為第一個正方形的邊長為2,所以

因此第一個三角形的直角邊長為,其面積為:

由題意,正方形的面積構(gòu)成以為首項,以為公比的等比數(shù)列;

所以其前項和為;

三角形的面積構(gòu)成以為首項,以為公比的等比數(shù)列;

所以其前項和為

因此這些正方形和三角形的面積的總和為:

.

故答案為:.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線Cy2=2px過點P(1,1).過點(0, )作直線l與拋物線C交于不同的兩點MN,過點Mx軸的垂線分別與直線OPON交于點A,B,其中O為原點.

(Ⅰ)求拋物線C的方程,并求其焦點坐標和準線方程;

(Ⅱ)求證:A為線段BM的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在平面直角坐標系中,N為圓C上的一動點,點D1,0),點MDN的中點,點P在線段CN上,且.

)求動點P表示的曲線E的方程;

)若曲線Ex軸的交點為,當動點PAB不重合時,設(shè)直線的斜率分別為,證明:為定值;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年9~12月某市郵政快遞業(yè)務(wù)量完成件數(shù)較2017年9~12月同比增長25%,該市2017年9~12月郵政快遞業(yè)務(wù)量柱形圖及2018年9~12月郵政快遞業(yè)務(wù)量結(jié)構(gòu)扇形圖如圖所示,根據(jù)統(tǒng)計圖,給出下列結(jié)論:

①2018年9~12月,該市郵政快遞業(yè)務(wù)量完成件數(shù)約1500萬件;

②2018年9~12月,該市郵政快遞同城業(yè)務(wù)量完成件數(shù)與2017年9~12月相比有所減少;

③2018年9~12月,該市郵政快遞國際及港澳臺業(yè)務(wù)量同比增長超過75%,其中正確結(jié)論的個數(shù)為( )

A. 3

B. 2

C. 1

D. 0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知無窮等比數(shù)列的首項、公比均為.

1)試求無窮等比子數(shù)列各項的和;

2)是否存在數(shù)列的一個無窮等比子數(shù)列,使得它各項的和為?若存在,求出所有滿足條件的子數(shù)列的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的離心率是,過點做斜率為的直線,橢圓與直線交于兩點,當直線垂直于軸時

(Ⅰ)求橢圓的方程;

(Ⅱ)當變化時,在軸上是否存在點,使得是以為底的等腰三角形,若存在求出的取值范圍,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的長軸長為4,離心率為

(1)求橢圓的標準方程;

(2)過作動直線交橢圓兩點,為平面上一點,直線的斜率分別為,且滿足,問點是否在某定直線上運動,若存在,求出該直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且經(jīng)過點.

求橢圓的標準方程;

設(shè)為橢圓的中線,點,過點的動直線交橢圓于另一點,直線上的點滿足,求直線的交點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知從個球(其中個白球,1個黑球)的口袋中取出個球(,),共有種取法,在這種取法中,可以分成兩類:一類是取出的個球全部為白球,另一類是取出1個黑球和個白球,共有種取法,即有等式成立,試根據(jù)上述思想,化簡下列式子:________,).

查看答案和解析>>

同步練習冊答案