已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.

(1)求橢圓的方程;

(2)若為橢圓的動(dòng)點(diǎn),為過(guò)且垂直于軸的直線上的點(diǎn),為橢圓的離心率),求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線.

 

【答案】

(1);(2)軌跡方程為軌跡是兩條平行于x軸的線段.

【解析】

試題分析:(1)橢圓有四個(gè)(兩對(duì))頂點(diǎn),短軸的兩個(gè)頂點(diǎn)到焦點(diǎn)的距離相等,這里可見(jiàn)是長(zhǎng)軸的兩頂點(diǎn),于是有,可求得,以及橢圓方程;(2)動(dòng)點(diǎn)的運(yùn)動(dòng)是由點(diǎn)在橢圓上運(yùn)動(dòng)引起的,因此要求點(diǎn)的軌跡方程,我們采取動(dòng)點(diǎn)轉(zhuǎn)移法,借助于點(diǎn),就是設(shè)點(diǎn)坐標(biāo)為,動(dòng)點(diǎn)的坐標(biāo)為,想辦法用表示,然后把代入點(diǎn)所在的橢圓的方程,即可得動(dòng)點(diǎn)的軌跡方程,化簡(jiǎn)即可。

試題解析:(1)設(shè)橢圓長(zhǎng)半軸長(zhǎng)及分別為a,c,由已知得

{  解得a=4,c=3,所以橢圓C的方程為

(2Ⅱ)設(shè)M(x,y),P(x,),其中由已知得

,故             ①

由點(diǎn)P在橢圓C上得  代入①式并化簡(jiǎn)得

所以點(diǎn)M的軌跡方程為軌跡是兩條平行于x軸的線段.

考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)動(dòng)點(diǎn)轉(zhuǎn)移法求軌跡方程,軌跡。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)到兩個(gè)

焦點(diǎn)的距離分別是7和1

(1)求橢圓的方程‘

(2)若為橢圓的動(dòng)點(diǎn),為過(guò)且垂直于軸的直線上的點(diǎn),

(e為橢圓C的離心率),求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)項(xiàng)點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1

(1)求橢圓的方程‘

(2)若為橢圓的動(dòng)點(diǎn),為過(guò)且垂直于軸的直線上的點(diǎn),

(e為橢圓C的離心率),求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(12分)已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)項(xiàng)點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1.

   (I)求橢圓的方程;

   (II)若為橢圓的動(dòng)點(diǎn),為過(guò)且垂直于軸的直線上的點(diǎn),(e為橢圓C的離心率),求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆陜西省西安市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)卷(解析版) 題型:解答題

已知橢圓的中心為直角坐標(biāo)系的原點(diǎn),焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)到兩個(gè)焦點(diǎn)的距離分別是7和1

(1)求橢圓的方程

(2)若為橢圓的動(dòng)點(diǎn),為過(guò)且垂直于軸的直線上的點(diǎn),(e為橢圓C的離心率),求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么曲線?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案