已知函數(shù)f(x)=
x2+102x+1
x2+1
,若f(a)=
2
3
,則f(-a)=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的奇偶性,即可得到結(jié)論.
解答: 解:f(x)=
x2+102x+1
x2+1
=1+
102x
x2+1

則f(x)-1=
102x
x2+1
是奇函數(shù),
∴f(-a)-1=-[f(a)-1],
即f(-a)=-f(a)+2=-
2
3
+2=
4
3
,
故答案為:
4
3
點(diǎn)評:本題主要考查函數(shù)值的計算,根據(jù)條件構(gòu)造奇函數(shù)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(-∞,+∞)內(nèi)有意義.對于給定的正數(shù)k,已知函數(shù)fk(x)=
f(x),f(x)≤k
k,f(x)>k
,取函f(x)=3-x-e-x.若對任意的x∈(-∞,+∞),恒有fk(x)=f(x),則k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),當(dāng)x,y∈R時,恒有f(x+y)=f(x)+f(y)
(1)求證:f(x)是奇函數(shù);
(2)如果x為正實(shí)數(shù),f(x)<0,并且f(1)=
1
2
,求求f(x)在區(qū)間[-2,6]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線y=kx+b與拋物線x2=4y相交于A、B兩點(diǎn),且|AB|=4,
(1)試用k來表示b;
(2)求
AB
中點(diǎn)M離x軸的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=log3
x+2
x
-a
在(1,2)內(nèi)有零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A、(0,log32)
B、(log32,1)
C、(-1,-log32)
D、(1,log34)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈(0,1)時,f(x)=2x,則f(-
5
2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m∈R,則“m<0”是“m<1”的( 。
A、充分必要條件
B、必要而不充分條件
C、充分而不必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知集合P={x|
1
2
≤x≤3},函數(shù)f(x)=log2(ax2-2x+2)的定義域?yàn)镼,
若P∩Q=[
1
2
,
2
3
),P∪Q=(-2,3],求實(shí)數(shù)a的值.
(2)函數(shù)f(x)定義在R上且f(x)=-f(x+
3
2
),當(dāng)
1
2
≤x≤3時,f(x)=log2(ax2-2x+2),若f(35)=1,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐的軸截面的母線與軸的夾角為
π
3
,母線長為3,則過頂點(diǎn)的截面面積的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案