【題目】已知f(x)|2x4||x3|.

(1)解關(guān)于x的不等式f(x)<8;

(2)對(duì)于正實(shí)數(shù)a,b,函數(shù)g(x)f(x)3a4b只有一個(gè)零點(diǎn),求的最小值.

【答案】1(3,1);(2.

【解析】

1)將函數(shù)解析式化成分段函數(shù),用分類討論的方法解不等式.

2)作出函數(shù)的大致圖象,的零點(diǎn),轉(zhuǎn)化為函數(shù)的交點(diǎn),由圖可知,然后利用基本不等式求的最小值.

解:(1)由題意可得,

故當(dāng)時(shí),不等式可化為,解得,故此時(shí)不等式的解集為

當(dāng)時(shí),不等式可化為,解得,故此時(shí)不等式的解集為;

當(dāng)時(shí),不等式可化為,解得,此時(shí)不等式無解,

綜上,不等式的解集為.

(2)作出函數(shù)的大致圖象及直線,如圖.

由圖可知,當(dāng)只有一個(gè)零點(diǎn)時(shí),,

,

當(dāng)且僅當(dāng)時(shí)等號(hào)成立.

的最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,,點(diǎn)是邊上一點(diǎn),且,點(diǎn)的中點(diǎn),將沿著折起,使點(diǎn)運(yùn)動(dòng)到點(diǎn)處,且滿足.

1)證明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于曲線,給出下列三個(gè)結(jié)論:

曲線關(guān)于原點(diǎn)對(duì)稱,但不關(guān)于軸、軸對(duì)稱;

曲線恰好經(jīng)過4個(gè)整點(diǎn)(即橫、縱坐標(biāo)均為整數(shù)的點(diǎn));

曲線上任意一點(diǎn)到原點(diǎn)的距離都不大于.

其中,正確結(jié)論的序號(hào)是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),現(xiàn)分別從他們?cè)谂嘤?xùn)期間參加的若干次預(yù)賽成績中隨機(jī)抽取8次,得到甲、乙兩位學(xué)生成績的莖葉圖.

1)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,對(duì)預(yù)賽成績的平均值和方差進(jìn)行分析,你認(rèn)為哪位學(xué)生的成績更穩(wěn)定?請(qǐng)說明理由;

2)若將頻率視為概率,求乙同學(xué)在一次數(shù)學(xué)競賽中成績高于84分的概率;

3)求在甲同學(xué)的8次預(yù)賽成績中,從不小于80分的成績中隨機(jī)抽取2個(gè)成績,列出所有結(jié)果,并求抽出的2個(gè)成績均大于85分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雷達(dá)圖(Radar Chart),又可稱為戴布拉圖、蜘蛛網(wǎng)圖(Spider Chart),原先是財(cái)務(wù)分析報(bào)表的一種,現(xiàn)可用于對(duì)研究對(duì)象的多維分析.圖為甲、乙兩人在五個(gè)方面的評(píng)價(jià)值的雷達(dá)圖,則下列說法不正確的是(

A.甲、乙兩人在次要能力方面的表現(xiàn)基本相同

B.甲在溝通、服務(wù)、銷售三個(gè)方面的表現(xiàn)優(yōu)于乙

C.在培訓(xùn)與銷售兩個(gè)方面上,甲的綜合表現(xiàn)優(yōu)于乙

D.甲在這五個(gè)方面的綜合表現(xiàn)優(yōu)于乙

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年國際籃聯(lián)籃球世界杯將于2019831日至915日在中國的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳國際籃聯(lián)籃球世界杯,某大學(xué)從全校學(xué)生中隨機(jī)抽取了120名學(xué)生,對(duì)是否會(huì)收看該國際籃聯(lián)籃球世界杯賽事的情況進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

會(huì)收看

不會(huì)收看

男生

60

20

女生

20

20

1)根據(jù)上表說明,能否有99%的把握認(rèn)為是否會(huì)收看該國際籃聯(lián)籃球世界杯賽事與性別有關(guān)?

2)甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為,且乙投球3次均未命中的概率為.

i)求乙投球的命中率;

ii)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

附:,其中,

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20203月,國內(nèi)新冠肺炎疫情得到有效控制,人們開始走出家門享受春光.某旅游景點(diǎn)為吸引游客,推出團(tuán)體購票優(yōu)惠方案如下表:

購票人數(shù)

1~50

51~100

100以上

門票價(jià)格

13/

11/

9/

兩個(gè)旅游團(tuán)隊(duì)計(jì)劃游覽該景點(diǎn).若分別購票,則共需支付門票費(fèi)1290元;若合并成個(gè)團(tuán)隊(duì)購票,則需支付門票費(fèi)990元,那么這兩個(gè)旅游團(tuán)隊(duì)的人數(shù)之差為(

A.20B.30C.35D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)為何值時(shí),軸為曲線的切線;

2)用表示、中的最大值,設(shè)函數(shù),當(dāng)時(shí),討論零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓是橢圓內(nèi)任一點(diǎn).設(shè)經(jīng)過的兩條不同直線分別于橢圓交于點(diǎn)的斜率分別為

1)當(dāng)經(jīng)過橢圓右焦點(diǎn)且中點(diǎn)時(shí),求:

①橢圓的標(biāo)準(zhǔn)方程;

②四邊形面積的取值范圍.

2)當(dāng)時(shí),若點(diǎn)重合于點(diǎn),且.求證:直線過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案