(本小題滿分14分)已知函數(shù),,它們的圖象在處有相同的切線.
(Ⅰ)求與的解析式;
(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)如果在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
19.
(I)f’(x)=3x2+a g’(x)=4x
k=g’(1)=4=f’(1)=3+a
∴a=1 f’(x)=3x2+1 f(x)=x3+x
∴(1,2) ∴b=0
∴g(x)=2x2 f(x)=x3+x
(II)G(x)=x3+x+2tx2+(t2-1)x+1
=x3+2tx2+t2x+1
G’(x)=3x2+4tx+t2
令G’(x)=0
3x2+4tx+t2=0
(3x+t)(x+t)=0
x1= x2=-t
若t>0 >-t
x |
(-, -t) |
-t |
(-t, ) |
(, +) |
|
y' |
+ |
0 |
- |
0 |
+ |
y |
極大值 |
極小值 |
∴f(x)在(-, -t) (-t, ) (, +)
若t<0 <-t
x |
(-,) |
(, -t) |
-t |
(-t, +) |
|
y' |
+ |
0 |
- |
0 |
+ |
y |
↑ |
極大值 |
↓ |
極小值 |
↑ |
∴f(x)在(-,)↑ (-t, +)↑ (, -t) ↓
(III)F(x)=x3+x-m(2x2)
=x3-2mx2+x
F’(x)=3x2-4mx+1
即x∈[, 3]時(shí) F’(x)≠0
x∈[, 3]時(shí) F’(x)≥0或F’(x)≤0
3x2-4mx+1≥0
4mx≤3x2+1
m≤
∴m≤
或3x2-4mx+1≤0
m≥
∴m取值范圍為{m| 或m≤}
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個(gè)公共點(diǎn)P。(1)試用a表示點(diǎn)P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個(gè)焦點(diǎn),當(dāng)a變化時(shí),求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個(gè)。設(shè)g(a)是以橢圓C1的半焦距為邊長(zhǎng)的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(diǎn)()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項(xiàng)公式;
(3)記,求數(shù)列{}的前n項(xiàng)和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對(duì)一應(yīng)季商品過(guò)去20天的銷售價(jià)格及銷售量進(jìn)行了監(jiān)測(cè)統(tǒng)計(jì)發(fā)現(xiàn),第天()的銷售價(jià)格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤(rùn);
(Ⅲ)該商品第幾天的利潤(rùn)最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點(diǎn)處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com