以下函數(shù)中,在區(qū)間(-∞,0)上為單調增函數(shù)的是(  )
A、y=-log 
1
2
(-x)
B、y=2+
x
1-x
C、y=x2-1
D、y=-(x+1)2
考點:函數(shù)單調性的判斷與證明
專題:函數(shù)的性質及應用
分析:根據(jù)函數(shù)單調性的性質即可得到結論.
解答: 解:y=-log 
1
2
(-x)=log2(-x)在(-∞,0)上為減函數(shù),否定A;
y=x2-1在(-∞,0)上也為減函數(shù),否定C;
y=-(x+1)2在(-∞,0)上不單調,否定D,
故選:B.
點評:本題主要考查函數(shù)單調性的判斷,要求熟練掌握常見函數(shù)的單調性.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面是邊長為3的正方形,側棱PA⊥平面ABCD,點E在側棱PC上,且BE⊥PC,若BE=
6
,則四棱錐P-ABCD的體積為( 。
A、6B、9C、18D、27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

四邊形ABCD中,設
AB
=
a
,
AD
=
b
,|
a
+
b
|=|
a
-
b
|,則四邊形ABCD一定是( 。
A、梯形B、菱形C、矩形D、正方形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A、B都是自然數(shù)集N,映射f:A→B是把A中的元素n映射到B中的元素2n+n,則在f映射下,B中元素20在A中的對應的元素是( 。
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文科)函數(shù)f(x)=log2(|x|-1)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+y=2a與圓x2+y2=4交于A,B兩點,O是坐標原點,向量
OA
,
OB
滿足|
OA
+
OB
|=|
OA
-
OB
|,則實數(shù)a的值為(  )
A、2
B、2或-2
C、1或-1
D、
6
-
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列圖形中,不能表示以x為自變量的函數(shù)圖象的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y1=2x與y2=x2,當x>0時,圖象的交點個數(shù)是( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C過點M(2,1),兩個焦點分別為(-
6
,0),(
6
,0),O為坐標原點,平行于OM的直線l交橢圓C于不同的兩點A、B.
(Ⅰ)求橢圓的方程;
(Ⅱ)求△OAB面積的最大值及此時直線l的方程
(Ⅲ)求證:直線MA、MB與x軸圍成一個等腰三角形.

查看答案和解析>>

同步練習冊答案