函數(shù)y1=2x與y2=x2,當(dāng)x>0時(shí),圖象的交點(diǎn)個(gè)數(shù)是( 。
A、0B、1C、2D、3
考點(diǎn):指數(shù)函數(shù)的圖像與性質(zhì)
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,x=2,4時(shí),y1=y2,從而可得結(jié)論.
解答: 解:由題意,x=2,4時(shí),y1=y2,
∴當(dāng)x>0時(shí),圖象的交點(diǎn)個(gè)數(shù)是2個(gè).
故選:C.
點(diǎn)評(píng):本題考查指數(shù)函數(shù)的圖象與性質(zhì),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

先后拋擲一個(gè)質(zhì)地均勻的骰子兩次,其結(jié)果記為(a,b),其中a表示第一次拋擲的結(jié)果,b表示第二次拋擲的結(jié)果,則函數(shù)f(x)=x3+ax2+bx+c有極值點(diǎn)的概率為(  )
A、
3
4
B、
7
8
C、
4
9
D、
5
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下函數(shù)中,在區(qū)間(-∞,0)上為單調(diào)增函數(shù)的是( 。
A、y=-log 
1
2
(-x)
B、y=2+
x
1-x
C、y=x2-1
D、y=-(x+1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,值域?yàn)椋?,+∞)的是(  )
A、y=4 
1
3-X
B、y=(
1
4
1-2x
C、y=
(
1
4
)x-1
D、y=
1-4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=2an+1,則Sn=(  )
A、Sn=
1
2
3
2
n-1
B、Sn=
1
2
3
2
n+1
C、Sn=
1
2
[(
3
2
n-1]
D、Sn=(
3
2
n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解我校2012年高考準(zhǔn)備報(bào)考“體育特長(zhǎng)生”的學(xué)生體重情況,將所得的數(shù)據(jù)整理后,畫(huà)出了頻率分布直方圖(如圖),已知圖中從左到右的前3個(gè)小組的頻率之比為1:2:3,第2小組的頻數(shù)為12,則報(bào)考“體育特長(zhǎng)生”的學(xué)生人數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax2+bx+c,x≥-1
f(-x-2),x<-1
,在其圖象上點(diǎn)(1,f(1))處的切線(xiàn)方程為y=2x+1,則圖象上點(diǎn)(-3,f(-3))處的切線(xiàn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3-
m+1
2
x2,g(x)=
1
3
-mx,m是實(shí)數(shù).
(Ⅰ)若f(x)在x=1處取得極大值,求m的值;
(Ⅱ)若f(x)在區(qū)間(2,+∞)為增函數(shù),求m的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,函數(shù)h(x)=f(x)-g(x)有三個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
a
|=4,|
b
|=2,且
a
b
夾角為120°,求:
(1)(
a
-2
b
)•(
a
-2
b
);  
(2)|2
a
-
b
|; 
(3)
a
a
+
b
的夾角.

查看答案和解析>>

同步練習(xí)冊(cè)答案