分析 (1)當P在圓上運動時,利用橢圓的定義,求點Q的軌跡方程;
(2)△ABC的面積取到最大值問題,要先建立關于某個自變量的函數(shù),后再求此函數(shù)的最大值即可.
解答 解:(1)由題意,MQ是線段DP的中垂線,∴|NP|=|NQ|+|QP|=|QN|+|QD|=6>|DN|=2$\sqrt{5}$,
∴Q的軌跡是以D,N為焦點的橢圓,且c=$\sqrt{5}$,a=3,b=2,
∴求點Q的軌跡方程是$\frac{{y}^{2}}{9}+\frac{{x}^{2}}{4}$=1;
(2)設l:y=$\frac{3}{2}$x+m,A(x1,y1),B(x2,y2),
與橢圓聯(lián)立,可得9x2+6mx+2m2-18=0,
x1+x2=-$\frac{2}{3}$m,x1•x2=$\frac{1}{9}$(2m2-18),
|AB|=$\sqrt{1+\frac{9}{4}}$•$\sqrt{\frac{4{m}^{2}}{9}-\frac{8({m}^{2}-9)}{9}}$=$\sqrt{\frac{13}{9}(-{m}^{2}+18)}$,
C($\frac{4}{3}$,2)到直線l的距離d=$\frac{2|m|}{\sqrt{13}}$,
S=$\frac{1}{2}|AB|d$=$\frac{1}{3}\sqrt{-{m}^{4}+18{m}^{2}}$,
∴m=±3時,S最大,此時直線l的方程為y=$\frac{3}{2}$x±3.
點評 本題考查了橢圓的定義及其性質、圓的性質、線段的垂直平分線的性質、直線與橢圓的位置關系、三角形面積的計算,考查了推理能力和計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | $3\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com