A. | {x|x<-2或x>4} | B. | {x|x<-2或x>2} | C. | {x|x<0或x>4} | D. | {x|x<0或x>6} |
分析 由偶函數(shù)f(x)滿足f(x)=2-x-4(x≤0),可得f(x)=f(|x|)=2|x|-4,根據(jù)偶函數(shù)的性質(zhì)將函數(shù)轉(zhuǎn)化為絕對(duì)值函數(shù),然后求解不等式可得答案.
解答 解:由偶函數(shù)f(x)滿足f(x)=2-x-4(x≤0),故f(x)=f(|x|)=2|x|-4,
則f(x-2)=f(|x-2|)=2|x-2|-4,要使f(|x-2|)>0,
只需2|x-2|-4>0,|x-2|>2,解得x>4,或x<0.
故解集為:{x|x<0,或x>4}.
故選:C.
點(diǎn)評(píng) 本題主要考查偶函數(shù)性質(zhì)、不等式的解法以及相應(yīng)的運(yùn)算能力,解答本題的關(guān)鍵是利用偶函數(shù)的性質(zhì)將函數(shù)轉(zhuǎn)化為絕對(duì)值函數(shù),屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=$\frac{{2}^{x}+1}{x}$ | B. | f(x)=$\frac{ln({x}^{2}+2)}{x}$ | C. | f(x)=$\frac{{x}^{3}+3}{x}$ | D. | f(x)=$\frac{lnx}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x1)<f(x2) | B. | f(x1)=f(x2) | ||
C. | f(x1)>f(x2) | D. | f(x1)與f(x2)的大小不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 乙的眾數(shù)是21 | B. | 甲的中位數(shù)是24 | ||
C. | 甲的極差是29 | D. | 甲罰球命中率比乙高 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
商店名稱 | A | B | C | D | E |
銷售額x(千萬(wàn)元) | 3 | 5 | 6 | 7 | 9 |
利潤(rùn)額y(千萬(wàn)元) | 2 | 3 | 3 | 4 | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{{2^n}+1}}{{{2^{n-1}}}}$ | B. | $\frac{{{2^n}-1}}{{{2^{n-1}}}}$ | C. | $\frac{{{2^n}+1}}{{{2^{n+1}}}}$ | D. | $\frac{{{2^n}-1}}{{{2^{n+1}}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向右平移$\frac{π}{3}$個(gè)單位 | B. | 向左平移$\frac{π}{4}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{3}$個(gè)單位 | D. | 向右平移$\frac{π}{4}$個(gè)單位 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com