A. | ($\frac{3}{2}$,2) | B. | (1,2] | C. | [$\frac{3}{2}$,2] | D. | (1,2) |
分析 根據分段函數在(-$\frac{3}{8}$,+∞)上是增函數,y1=ax-a,x>1必須是增函數,即a>1,(1,+∞)單調遞增,那么y2=${x}^{2}+\frac{1}{2}ax-2,x≤1$,其對稱軸x=$-\frac{a}{4}$,在[$-\frac{a}{4}$,1]必須是單調遞增.結合單調遞增的性質,y1≥y2可得結論.
解答 解:分段函數在(-$\frac{3}{8}$,+∞)上是增函數,y1=ax-a,x>1必須是增函數,即a>1,(1,+∞)單調遞增,
那么y2=${x}^{2}+\frac{1}{2}ax-2,x≤1$,其對稱軸x=$-\frac{a}{4}$,在[$-\frac{a}{4}$,1]必須是單調遞增.
∴$-\frac{3}{8}≥-\frac{a}{4}$,解得:$a≥\frac{3}{2}$.
在(-$\frac{3}{8}$,+∞)上是增函數,那么y1的最小值要大于y2的最大值,即1$+\frac{1}{2}a-2≤0$,
解得:a≤2
∴a的取值范圍是[$\frac{3}{2}$,2].
故選:C.
點評 本題考查了分段函數單調性的運用,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | m∥n,n∥α⇒m∥α | B. | α⊥β,α∩β=m,l⊥m⇒l⊥β | ||
C. | l⊥m,l⊥n,m?α,n?α⇒l⊥α | D. | m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,+∞) | B. | (-1,1) | C. | [-1,1) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$個單位長度 | B. | 向右平移$\frac{π}{3}$個單位長度 | ||
C. | 向左平移$\frac{π}{6}$個單位長度 | D. | 向右平移$\frac{π}{6}$個單位長度 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com