16.設(shè)f(x)為定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=2x+2x+b,則b為(  )
A.-1B.0C.1D.無(wú)法確定

分析 根據(jù)奇函數(shù)的性質(zhì),可得f(0)=0,代入構(gòu)造關(guān)于b的方程,解得答案.

解答 解:∵f(x)為定義在R上的奇函數(shù),
∴f(0)=0,
∵當(dāng)x≥0時(shí),f(x)=2x+2x+b,
∴f(0)=1+b=0,
解得:b=-1.
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的性質(zhì),方程思想,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知f(x)=$\left\{\begin{array}{l}{{a}^{x}-a,x>1}\\{{x}^{2}+\frac{1}{2}ax-2,x≤1}\end{array}\right.$是(-$\frac{3}{8}$,+∞)上的增函數(shù),那么a的取值范圍是(  )
A.($\frac{3}{2}$,2)B.(1,2]C.[$\frac{3}{2}$,2]D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=|x2-2x-3|-a滿足下列條件,求a的取值范圍.
(1)函數(shù)有兩個(gè)零點(diǎn);
(2)函數(shù)有四個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知函數(shù)f(x)=x4-4x3+10x2-27,則方程f(x)=0在[2,10]上的根( 。
A.有3個(gè)B.有2個(gè)C.有且只有1個(gè)D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,且過(guò)點(diǎn)$(1,\frac{{\sqrt{2}}}{2})$.
(1)求橢圓C的方程;
(2)動(dòng)直線l與橢圓C有且只有一個(gè)公共點(diǎn),問(wèn):在x軸上是否存在兩個(gè)定點(diǎn),它們到直線l的距離之積等于1?如果存在,求出這兩個(gè)定點(diǎn)的坐標(biāo);如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|x2-4x+3<0},B={|x|$\frac{x-4}{2-x}$≥0},則A∩B=( 。
A.[2,3)B.(1,4)C.(2,3)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.等比數(shù)列{an}滿足:a1+a6=11,a3a4=$\frac{32}{9}$,則a1=$\frac{32}{3}或\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow$=(cosα,sinα)(α∈R)
(I)若α=-$\frac{π}{6}$,試用基底$\overrightarrow{a}$,$\overrightarrow$表示向量$\overrightarrow{c}$=(2$\sqrt{3}$,0);
(II)若$\overrightarrow{a}$⊥$\overrightarrow$,求α值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{log_3}x,0<x≤9\\ f(x-4),x>9\end{array}$則$f(13)+2f(\frac{1}{3})$的值為(  )
A.1B.0C.-2D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案