方程lgx+lg(7-x)=1的解集為
 
考點:對數(shù)的運算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由lgx+lg(7-x)=1,利用對數(shù)的運算性質(zhì)可得lgx(7-x)=1,即x(7-x)=101,解出即可.
解答: 解:∵lgx+lg(7-x)=1,
∴l(xiāng)gx(7-x)=1,
∴x(7-x)=101,
化為x2-7x+10=0,
解得x=2,5.
經(jīng)檢驗滿足條件.
∴原方程組的解集為{2,5}.
故答案為:{2,5}.
點評:本題考查了對數(shù)運算法則、一元二次方程的解法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-1,g(x)=a|x-1|.
(Ⅰ)若當(dāng)x∈R時,不等式f(x)≥g(x)恒成立,求實數(shù)a的取值范圍;
(Ⅱ)求函數(shù)h(x)=|f(x)|+g(x)在區(qū)間[-2,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角A是△ABC的一個內(nèi)角,若sinA+cosA=
7
13
,則tanA等于( 。
A、
12
5
B、-
7
12
C、
7
12
D、-
12
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)為R上的奇函數(shù),當(dāng)x<0時,f(x)=log2(2-x),則f(0)+f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列中,如果a4+a6=22,則前9項的和為(  )
A、297B、144
C、99D、66

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=1+
2
i
,則|z|=( 。
A、
3
B、
5
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大;
(Ⅱ)已知函數(shù)f(A,C)=cos2
A
2
+sin2
C
2
-1,求f(A,C)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD中,M為AB的中點,MN⊥DM,BN平方∠CBE,求證:MD=MN

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,點E為BB1的中點,則點C1到平面A1ED的距離是
 

查看答案和解析>>

同步練習(xí)冊答案