【題目】已知函數(shù),(,).

1)若,求的極值和單調(diào)區(qū)間;

2)若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)a的取值范圍.

【答案】1有極小值1,函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2.

【解析】

1)寫出函數(shù)解析式,求導(dǎo),得當(dāng)x變化時(shí),,的變化情況表,從而求出極值與單調(diào)區(qū)間;

2)將存在性問題轉(zhuǎn)化為最值問題,得在區(qū)間上的最小值小于0,分類討論,根據(jù)導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出最小值,再求參數(shù)的范圍.

1)∵,∴),∴

,得

當(dāng)x變化時(shí),,的變化情況如下表:

x

1

-

0

+

極小值

∴當(dāng)時(shí),函數(shù)有極小值1;

函數(shù)的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;

2)若在區(qū)間上至少存在一點(diǎn),使成立,

在區(qū)間上的最小值小于0,

,()令,得

①當(dāng)時(shí),

∴函數(shù)在區(qū)間上單調(diào)遞減

∴函數(shù)在區(qū)間上的最小值為

∴由,即

②當(dāng)時(shí),

(。┊(dāng)時(shí),

∴函數(shù)在區(qū)間上單調(diào)遞減

∴函數(shù)在區(qū)間上的最小值為

顯然,這與在區(qū)間上的最小值小于0不符

(ⅱ)當(dāng)時(shí)

當(dāng)x變化時(shí),,的變化情況如下表:

x

0

+

極小值

∴函數(shù)在區(qū)間上的最小值為

∴由,得,即

∴綜上述,實(shí)數(shù)a的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為提高課堂教學(xué)效果,最近立項(xiàng)了市級課題《高效課堂教學(xué)模式及其運(yùn)用》,其中王老師是該課題的主研人之一,為獲得第一手?jǐn)?shù)據(jù),她分別在甲、乙兩個(gè)平行班采用傳統(tǒng)教學(xué)高效課堂兩種不同的教學(xué)模式進(jìn)行教學(xué)實(shí)驗(yàn).為了解教改實(shí)效,期中考試后,分別從兩個(gè)班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),作出如圖所示的莖葉圖,成績大于70分為成績優(yōu)良”.

1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為成績優(yōu)良與教學(xué)方式有關(guān)

甲班

乙班

總計(jì)

成績優(yōu)良

成績不優(yōu)良

總計(jì)

2)從甲、乙兩班40個(gè)樣本中,成績在60分以下(不含60分)的學(xué)生中任意選取2人,記來自甲班的人數(shù)為,求的分布列與數(shù)學(xué)期望.

附:(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:小時(shí))的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:

1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12小時(shí)的概率;

2)求頻率分布直方圖中的ab的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,且,點(diǎn)M在棱上,點(diǎn)NBC的中點(diǎn),且滿足.

1)證明:平面;

2)若M的中點(diǎn),求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中是常數(shù)).

(Ⅰ)求過點(diǎn)與曲線相切的直線方程;

(Ⅱ)是否存在的實(shí)數(shù),使得只有唯一的正數(shù),當(dāng)時(shí)不等式恒成立,若這樣的實(shí)數(shù)存在,試求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為4,點(diǎn)P(2,3)在橢圓上.

(1)求橢圓C的方程;

(2)過點(diǎn)P引圓的兩條切線PAPB,切線PA,PB與橢圓C的另一個(gè)交點(diǎn)分別為A,B試問直線AB的斜率是否為定值?若是,求出其定值,若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為,以橢圓長、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為.

(Ⅰ)求橢圓的方程;

(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為,當(dāng)動點(diǎn)在定直線上運(yùn)動時(shí),直線分別交橢圓于兩點(diǎn)、,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?

(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計(jì)該校學(xué)生每周平均體育運(yùn)動時(shí)間超過4個(gè)小時(shí)的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動時(shí)間超過4個(gè)小時(shí).請完成每周平均體育運(yùn)動時(shí)間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動時(shí)間與性別有關(guān).

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果函數(shù)滿足是它的零點(diǎn),則函數(shù)有趣的,例如就是有趣的,已知有趣的”.

1)求出bc并求出函數(shù)的單調(diào)區(qū)間;

2)若對于任意正數(shù)x,都有恒成立,求參數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案