分析 (1)求出函數(shù)y=$\frac{1}{3}$x3+x在x=1處的導(dǎo)數(shù)值,這個(gè)導(dǎo)數(shù)值即函數(shù)圖象在該點(diǎn)處的切線的斜率,然后根據(jù)直線的點(diǎn)斜式方程求解即可;
(2)導(dǎo)數(shù)值域就是切線斜率取值范圍,由此即可得出結(jié)論.
解答 解:(1)因?yàn)閥=$\frac{1}{3}$x3+x,
所以y′=x2+1,
曲線y=$\frac{1}{3}$x3+x在點(diǎn)(1,$\frac{4}{3}$)處的切線的斜率為:y′|x=1=2.
此處的切線方程為:y-$\frac{4}{3}$=2(x-1),即6x-3y-2=0;
(2)∵y′=x2+1≥1,∴tanα≥1,
∴該曲線的切線傾斜角的取值范圍是[$\frac{π}{4}$,$\frac{π}{2}$).
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的幾何意義、關(guān)鍵是求出直線的斜率,正確利用直線的點(diǎn)斜式方程,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 40 | B. | -40 | C. | 80 | D. | -80 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $-\frac{3}{5}$ | C. | $\frac{4}{5}$ | D. | $-\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b>c | B. | c>a>b | C. | a>c>b | D. | b>c>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-3)∪(0,3) | B. | (-3,0)∪(3,+∞) | C. | (-∞,-3)∪(-3,0) | D. | (0,3)∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $±2\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $±\sqrt{15}$ | D. | $4\sqrt{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | 3 | D. | 3-i |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com