已知x、y滿足約束條件 
x+y≥5
x-y+5≤0
x≤3
,使z=x+ay(a>0)取得最小的最優(yōu)解有無數(shù)個,則a的值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式對應的平面區(qū)域,利用線性規(guī)劃的知識,要使目標函數(shù)的最優(yōu)解有無數(shù)個,則目標函數(shù)和其中一條直線平行,然后根據(jù)條件即可求出a的值.
解答: 解:作出不等式組對應的平面區(qū)域如圖:(陰影部分).
由z=x+ay(a>0)得y=-
1
a
x+
z
a
,
∵a>0,∴目標函數(shù)的斜率k=-
1
a
<0.
平移直線y=-
1
a
x+
z
a

由圖象可知當直線y=-
1
a
x+
z
a
和直線AB:x+y=5平行時,此時目標函數(shù)取得最小值時最優(yōu)解有無數(shù)多個,
此時-
1
a
=-1,即a=1.即目標函數(shù)為z=x+y,
故答案為:1
點評:本題主要考查線性規(guī)劃的應用,利用數(shù)形結合是解決線性規(guī)劃問題中的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

袋中有大小相同的五個小球,編號分別為l,2,3,4,5,從袋中每次任取一個球,記下其編號.若所取球的編號為奇數(shù),則把該球編號改為6后放回袋中,繼續(xù)取球;若所取球的編號為偶數(shù),則直接放回袋中,繼續(xù)取球.
(Ⅰ)求第二次取到編號為偶數(shù)球的概率.
(Ⅱ)求兩次取出的球的編號之差的絕對值小于2的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,圓O的直徑AB=6,C為圓周上一點,BC=3,過C作圓O的切線l,則點A到直線l的距離AD=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知隨機變量X服從正態(tài)分布N(1,σ2),則P[(X-3)
X2-1
<0]=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設一列勻速行駛的火車,通過長860m的隧道時,整個車身都在隧道里的時間是22s.該列車以同樣的速度穿過長790m的鐵橋時,從車頭上橋,到車尾下橋,共用時33s,則這列火車的長度為
 
m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足a1=2,an+1=2an(n∈N*),Sn數(shù)列{an}的前n項和,則S6的值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的三頂點坐標A(3,0),B(0,4),C(0,0),D點的坐標為(
3
2
,0),向△ABC內部投一石子,那么石子落在△ABD內的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=sin
x
2
+cos
x
2
,若存在x1,x2∈R,使得任意x∈R,f(x1)≤f(x)≤f(x2)恒成立,且兩邊等號能取到,則|x1-x2|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線y=m(0<m<2)與函數(shù)y=sinωx+cosωx(ω>0)的圖象依次交于A(1,m),B(5,m),C(7,m)三點,則ω=( 。
A、
π
3
B、
π
4
C、
π
2
D、
π
6

查看答案和解析>>

同步練習冊答案