平面向量的夾角為60°,=(2,0),||=1,則|+2|=( )
A.
B.
C.4
D.12
【答案】分析:根據(jù)向量的坐標(biāo)求出向量的模,最后結(jié)論要求模,一般要把模平方,知道夾角就可以解決平方過(guò)程中的數(shù)量積問(wèn)題,題目最后不要忘記開(kāi)方.
解答:解:由已知|a|=2,
|a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12
∴|a+2b|=
故選B
點(diǎn)評(píng):本題是對(duì)向量數(shù)量積的考查,根據(jù)兩個(gè)向量的夾角和模之間的關(guān)系,根據(jù)和的模兩邊平方,注意要求的結(jié)果非負(fù),舍去不合題意的即可.兩個(gè)向量的數(shù)量積是一個(gè)數(shù)量,它的值是兩個(gè)向量的模與兩向量夾角余弦的乘積,結(jié)果可正、可負(fù)、可以為零,其符號(hào)由夾角的余弦值確定.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
u
=(-2,2,5),
v
=(6,-4,4)分別是平面α,β的法向量,則平面α與β的
夾角為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
b
的夾角為
π
6
,|
a
|=
3
,|
b
|=1,則|
a
-
b
|=
 
;若平行四邊形ABCD滿(mǎn)足
AB
=
a
+
b
,
AD
=
a
-
b
,則平行四邊形ABCD的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省外語(yǔ)外貿(mào)大學(xué)附設(shè)外語(yǔ)學(xué)校高三(上)數(shù)學(xué)寒假作業(yè)3(文科)(解析版) 題型:選擇題

關(guān)于平面向量,.有下列三個(gè)命題:
①若=,則=
②若=(1,k),=(-2,6),,則k=-3.
③非零向量滿(mǎn)足||=||=|-|,則+的夾角為60°.
其中真命題的個(gè)數(shù)有( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省六安市壽縣一中高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

關(guān)于非零平面向量,.有下列命題:
①若=(1,k),=(-2,6),∥b,則k=-3;  ②若||=||=|-|,則+的夾角為60°;
③|+|=||+||?的方向相同;    ④||+||>|-|?的夾角為銳角;
⑤若=(1,-3),=(-2,4),=(4,-6),則表示向量4,3-2的有向線(xiàn)段首尾連接能構(gòu)成三角形.
其中真命題的序號(hào)是    (將所有真命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:《2.1-2.2 平面向量的概念及其線(xiàn)性運(yùn)算》2011年同步練習(xí)(解析版) 題型:填空題

關(guān)于平面向量,,有下列三個(gè)命題:
①若=,則=、
②若=(1,k),=(-2,6),,則k=-3.
③非零向量滿(mǎn)足||=||=|-|,則+的夾角為60°.
其中真命題的序號(hào)為    .(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案