【題目】已知函數(shù).

1)求函數(shù)的值域;

2)在中,角所對(duì)的邊分別為,,,求的值;

3)請(qǐng)敘述余弦定理(寫(xiě)出其中一個(gè)式子即可)并加以證明.

【答案】1;(22;(3)詳見(jiàn)解析

【解析】

1)推導(dǎo)出fxcosx2sinx),由此能求出函數(shù)fx)的值域.

2)由fB)=2,得到fB)=2sinB)=2,B0π),求出B,由余弦定理得:3a2+c22accos,由△ABC面積Sac1,由此能求出a+c

3)建立坐標(biāo)系,用解析法即可證明余弦定理.

1)∵

fxsinxcosx2sinx),

∴由xR,可得:fx)=2sinx[22];

2)∵△ABC中,角A,BC的對(duì)邊分別為a,bc,fB)=2,

fB)=2sinB)=2,B0,π),

B,

b,∴由余弦定理得:3a2+c22accos,

∵△ABC面積S,∴acsinBac,解得ac1

a2+c23+2accos3ac2,

∴(a+c2a2+c2+2ac2+24,

a+c2

3)證明:余弦定理為:a2b2+c22bccosA

下用解析法證明:以A為原點(diǎn),射線(xiàn)ABx軸正向,建立直角坐標(biāo)系,則得A0,0),Bc,0),CbcosA,bsinA).

由兩點(diǎn)距離公式得:

a2|BC|2=(cbcosA2+(﹣bsinA2b2+c22bccosA

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)討論的導(dǎo)數(shù)的單調(diào)性;

2)若有兩個(gè)極值點(diǎn),,求實(shí)數(shù)的取值范圍,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,,試證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,,為線(xiàn)段的中點(diǎn),若為線(xiàn)段上的動(dòng)點(diǎn)(不含.

1)平面與平面是否互相垂直?如果是,請(qǐng)證明;如果不是,請(qǐng)說(shuō)明理由;

2)求二面角的余弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20173月鄭州市被國(guó)務(wù)院確定為全國(guó)46個(gè)生活垃圾分類(lèi)處理試點(diǎn)城市之一,此后由鄭州市城市管理局起草公開(kāi)征求意見(jiàn),經(jīng)專(zhuān)家論證,多次組織修改完善,數(shù)易其稿,最終形成《鄭州市城市生活垃圾分類(lèi)管理辦法》(以下簡(jiǎn)稱(chēng)《辦法》).《辦法》已于2019926日被鄭州市人民政府第35次常務(wù)會(huì)議審議通過(guò),并于2019121日開(kāi)始施行.《辦法》中將鄭州市生活垃圾分為廚余垃圾、可回收垃圾、有害垃圾和其他垃圾4類(lèi).為了獲悉高中學(xué)生對(duì)垃圾分類(lèi)的了解情況,某中學(xué)設(shè)計(jì)了一份調(diào)查問(wèn)卷,500名學(xué)生參加測(cè)試,從中隨機(jī)抽取了100名學(xué)生問(wèn)卷,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:,,,并整理得到如下頻率分布直方圖:

1)從總體的500名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)不低于60的概率;

2)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間內(nèi)的學(xué)生人數(shù),

3)學(xué)校環(huán)保志愿者協(xié)會(huì)決定組織同學(xué)們利用課余時(shí)間分批參加垃圾分類(lèi),我在實(shí)踐活動(dòng),以增強(qiáng)學(xué)生的環(huán)保意識(shí).首次活動(dòng)從樣本中問(wèn)卷成績(jī)低于40分的學(xué)生中隨機(jī)抽取2人參加,已知樣本中分?jǐn)?shù)小于405名學(xué)生中,男生3人,女生2人,求抽取的2人中男女同學(xué)各1人的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)若,求函數(shù)的最值;

2)討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年的423日為世界讀書(shū)日,某調(diào)查機(jī)構(gòu)對(duì)某校學(xué)生做了一個(gè)是否喜愛(ài)閱讀的抽樣調(diào)查.該調(diào)查機(jī)構(gòu)從該校隨機(jī)抽查了100名不同性別的學(xué)生(其中男生45名),統(tǒng)計(jì)了每個(gè)學(xué)生一個(gè)月的閱讀時(shí)間,其閱讀時(shí)間(小時(shí))的頻率分布直方圖如圖所示:

1)求樣本學(xué)生一個(gè)月閱讀時(shí)間的中位數(shù).

2)已知樣本中閱讀時(shí)間低于的女生有30名,請(qǐng)根據(jù)題目信息完成下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為閱讀與性別有關(guān).

列聯(lián)表

總計(jì)

總計(jì)

附表:

0.15

0.10

0.05

2.072

2.706

3.841

其中:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知無(wú)窮數(shù)列{an}anZ)的前n項(xiàng)和為Sn,記S1S2,Sn中奇數(shù)的個(gè)數(shù)為bn

(1)若an=n,請(qǐng)寫(xiě)出數(shù)列{bn}的前5項(xiàng);

(2)求證:a1為奇數(shù),aii=2,34,)為偶數(shù)數(shù)列{bn}是單調(diào)遞增數(shù)列的充分不必要條件;

(3)若ai=bii=1,2,3,,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求處的切線(xiàn)方程;

2)若,不等式恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案