18.已知兩點(diǎn)A(1,0),B(1,$\sqrt{3}$),O為坐標(biāo)原點(diǎn),點(diǎn)C在第二象限,且∠AOC=150°,設(shè)$\overrightarrow{OC}$=2$\overrightarrow{OA}$+λ$\overrightarrow{OB}$(λ∈R),則λ=( 。
A.-1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.1

分析 利用向量共線定理、向量相等及其三角函數(shù)的定義即可得出.

解答 解:由題設(shè)$\overrightarrow{OC}$=2$\overrightarrow{OA}$+λ$\overrightarrow{OB}$(λ∈R),可得C$(-2+λ,\sqrt{3}λ)$,
由三角函數(shù)的定義可得:tan∠AOC=$\frac{\sqrt{3}λ}{λ-2}$=-$\frac{\sqrt{3}}{3}$,解得$λ=\frac{1}{2}$.
故選:C.

點(diǎn)評(píng) 本題考查了向量共線定理、向量相等、三角函數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}$),滿足:最大值為2,其圖象相鄰兩個(gè)最低點(diǎn)之間距離為π,且函數(shù)f(x)的圖象關(guān)于點(diǎn)($\frac{π}{12}$,0)對(duì)稱.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若向量$\overrightarrow{a}$=(f(x-$\frac{π}{6}$),1),$\overrightarrow$=($\frac{1}{2}$,-2cosx),$x∈[-\frac{3π}{4},\frac{π}{2}]$,設(shè)函數(shù)$g(x)=\overrightarrow a•\overrightarrow b+\frac{1}{2}$,求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.以下是某地搜集到的新房屋的銷售價(jià)格y與房屋的面積x的數(shù)據(jù):
房屋面積(m211511080135105
銷售價(jià)格(萬元)24.821.618.429.222
數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖如圖所示;
(1)求線性回歸方程.(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)
(參考數(shù)據(jù) $\overline{x}$=$\frac{1}{5}$$\sum_{i=1}^{5}$xi=109,$\sum_{i=1}^{5}$(xi-$\overline{x}$)2=1570,$\sum_{i=1}^{5}$(xi-$\overline{x}$)(yi-$\overline{y}$)=311.2)
(2)據(jù)(1)的結(jié)果估計(jì)當(dāng)房屋面積為150m2時(shí)的銷售價(jià)格.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知四面體ABCD的六條棱中,AC=BD=4,其余的四條棱的長(zhǎng)都是3,則此四面體的外接球的表面積為( 。
A.43πB.17πC.34πD.$\frac{17π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若x為三角形中的最小內(nèi)角,則函數(shù)y=$\sqrt{2}sin({x+{{45}°}})$的值域是( 。
A.$(0,\frac{{\sqrt{2}}}{2}]$B.$[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$C.$(\frac{1}{2},\frac{{\sqrt{2}}}{2}]$D.$(1,\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)a=${∫}_{0}^{π}$(sinx+cosx)dx,且二項(xiàng)式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n的所有二項(xiàng)式系數(shù)之和為64,則其展開式中含x2項(xiàng)的系數(shù)是( 。
A.-192B.192C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sin(α+$\frac{π}{4}$)+sin(α-$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$
(1)求sinα的值;     
(2)求$\frac{{sin(α-\frac{π}{4})}}{1-cos2α-sin2α}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx-a(x-1),g(x)=ex
(1)求當(dāng)a=1時(shí),函數(shù)f(x)的單調(diào)區(qū)間;
(2)過原點(diǎn)分別作曲線y=f(x)與y=g(x)的切線l1、l2,已知兩切線的斜率互為倒數(shù),證明:a=0或$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某幾何函數(shù)的三視圖如圖所示,則該幾何的體積為( 。
A.8+16πB.8+8πC.16+16πD.16+8π

查看答案和解析>>

同步練習(xí)冊(cè)答案