1.已知函數(shù)f(x)=loga(x2-2ax)(a>0且a≠1)滿足對任意的x1,x2∈[3,4],且x1≠x2時,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0成立,則實(shí)數(shù)a的取值范圍是(1,$\frac{3}{2}$).

分析 由已知可得函數(shù)f(x)=loga(x2-2ax)(a>0且a≠1)在[3,4]上為增函數(shù),進(jìn)而可得t=x2-2ax,x∈[3,4]為增函數(shù),且恒為正,解得答案.

解答 解:∵對任意的x1,x2∈[3,4],且x1≠x2時,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}$>0成立,
∴函數(shù)f(x)=loga(x2-2ax)(a>0且a≠1)在[3,4]上為增函數(shù),
當(dāng)a∈(0,1)時,y=logat為減函數(shù),t=x2-2ax,x∈[3,4]為增函數(shù),
此時函數(shù)f(x)=loga(x2-2ax)(a>0且a≠1)不可能為增函數(shù),
當(dāng)a∈(1,+∞)時,y=logat為增函數(shù),
若函數(shù)f(x)=loga(x2-2ax)(a>0且a≠1)在[3,4]上為增函數(shù),
則t=x2-2ax,x∈[3,4]為增函數(shù),且恒為正,
即$\left\{\begin{array}{l}a>1\\ a≤3\\ 9-6a>0\end{array}\right.$,
解得:a∈(1,$\frac{3}{2}$),
故答案為:(1,$\frac{3}{2}$)

點(diǎn)評 本題考查的知識點(diǎn)是復(fù)合函數(shù)的單調(diào)性,函數(shù)恒成立問題,對數(shù)函數(shù)的圖象和性質(zhì),難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)y=ln(x+1)的定義域是(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)命題p:函數(shù)f(x)=3x-$\frac{4}{x}$在區(qū)間(1,$\frac{3}{2}}$)內(nèi)有零點(diǎn);命題q:設(shè)f'(x)是函數(shù)f(x)的導(dǎo)函數(shù),若存在x0使f'(x0)=0,則x0為函數(shù)f(x)的極值點(diǎn).下列命題中真命題是(  )
A.p且qB.p或qC.(非p)且qD.(非p)或q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知AB為圓O的直徑,M為圓O的弦CD上一動點(diǎn),AB=8,CD=6,則$\overrightarrow{MA}$•$\overrightarrow{MB}$的取值范圍是[-9,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=x-$\sqrt{3x-2}$的值域?yàn)椋ā 。?table class="qanwser">A.$[{\frac{2}{3},+∞})$B.$({\frac{2}{3},+∞})$C.$[{-\frac{1}{12},+∞})$D.$({-\frac{1}{12},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知角α的終邊經(jīng)過點(diǎn)P,求α的正弦、余弦、正切值.
(1)P(3,4);(2)P(-3,4);
(3)P(0,5);(4)P(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)過點(diǎn)(2,3),且右焦點(diǎn)為圓C:(x-2)2+y2=2的圓心.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓E上在y軸左側(cè)的一點(diǎn),過點(diǎn)P作圓C的兩條切線,切點(diǎn)分別為A、B,且兩切線的斜率之積為$\frac{1}{2}$,求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的是( 。
A.若長方體的長、寬、高各不相同,則長方體的三視圖中不可能有正方形(以長×寬所在的平面為主視面)
B.照片是三視圖中的一種
C.若三視圖中有圓,則原幾何體中一定有球體
D.圓錐的三視圖都是等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)為偶函數(shù),且當(dāng)x≤0時,f(x)=ex-$\frac{1}{x-1}$,若f(-a)+f(a)≤2f(1),則實(shí)數(shù)a取值范圍是( 。
A.(-∞,-1]∪[1,+∞)B.[-1,0]C.[0,1]D.[-1,1]

查看答案和解析>>

同步練習(xí)冊答案