如果f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),那么數(shù)學(xué)公式=________.


分析:先根據(jù)函數(shù)f(x)是以2為周期的奇函數(shù)將化為,再由奇偶性可得答案.
解答:因?yàn)楹瘮?shù)f(x)是以2為周期的奇函數(shù),
==
又由當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),則=

故答案為:
點(diǎn)評(píng):本題主要考查函數(shù)的性質(zhì)--周期性與奇偶性,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表.

f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示.
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)y=f(x)是周期函數(shù);
②函數(shù)f(x)在[0,2]是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最大值為4;
④當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn).
其中真命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•宜賓二模)如果f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),那么f(-
9
2
)
=
-
1
2
-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:宜賓二模 題型:填空題

如果f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),那么f(-
9
2
)
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年四川省宜賓市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:填空題

如果f(x)是周期為2的奇函數(shù),當(dāng)0≤x≤1時(shí),f(x)=2x(1-x),那么=   

查看答案和解析>>

同步練習(xí)冊(cè)答案