9.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則,f(2016)的值為( 。
A.-1B.0C.1D.2

分析 根據(jù)題意,由奇函數(shù)的性質(zhì)可得f(0)=0,進(jìn)而由f(x)滿足f(x+2)=-f(x),可得f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)是周期為4的函數(shù),則有f(2016)=f(4×504)=f(0),即可得答案.

解答 解:根據(jù)題意,f(x)為R上的奇函數(shù),則有f(0)=-f(0),
即f(0)=0,
f(x)滿足f(x+2)=-f(x),則有f(x+4)=-f(x+2)=f(x),
即函數(shù)f(x)是周期為4的函數(shù),
則有f(2016)=f(4×504)=f(0)=0;
故選:B.

點評 本題考查函數(shù)奇偶性的性質(zhì)以及周期性的判斷與應(yīng)用,關(guān)鍵在于利用奇函數(shù)的性質(zhì)求出f(0)的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)a=${0.6^{\frac{1}{2}}}$,b=${0.6^{\frac{1}{3}}}$,c=log0.63,則( 。
A.c<b<aB.c<a<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)不等式ax2+bx+c<0的解集是(-∞,1)∪(3,+∞),則不等式cx2+bx+a>0的解集是($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=sin x•cos x的導(dǎo)數(shù)是( 。
A.cos2x+sin2xB.cos2x-sin2xC.2cos x•sin xD.cos x•sin x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.復(fù)數(shù) z=$\frac{3-i}{1-2i}$的共軛復(fù)數(shù)是1-i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若集合A={y|y=x2-2x,x∈R},B={y|y=-x2+6x+10,x∈R},則A∩B={y|-1≤y≤19}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某商場對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:①如果不超過200元,則不予優(yōu)惠;②如果超過200元但不超過500元,則按標(biāo)價給予9折優(yōu)惠;③如果超過500元,其500元按②給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.若設(shè)一次購物總額為x元,優(yōu)惠后實際付款為y元.
(1)試寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)若某人兩次去購物,分別付款168元和423元,假設(shè)她一次購買上述同樣的商品,則應(yīng)付款多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.解關(guān)于x的不等式3ax2-(a+3)x+1<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)y=loga(1-3ax)(a>0,a≠1)在區(qū)間(0,2)上是單調(diào)增函數(shù),則常數(shù)a的取值范圍是(0,$\frac{1}{6}$].

查看答案和解析>>

同步練習(xí)冊答案