如圖,PA垂直于矩形ABCD所在的平面,AD=PA=2,,E、F分別是AB、PD的中點(diǎn).
(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求四面體PEFC的體積.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面為直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點(diǎn).(1)求證:PB⊥DM;(2)求CD與平面ADMN所成角的正弦值;(3)在棱PD上是否存在點(diǎn)E,且PE∶ED=λ,使得二面角C-AN-E的平面角為60o.若存在求出λ值,若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分16分)如圖:AD=2,AB=4的長(zhǎng)方形所在平面與正所在平面互相垂直,分別為的中點(diǎn).
(1)求四棱錐-的體積;
(2)求證:平面;
(3)試問:在線段上是否存在一點(diǎn),使得平面平面?若存在,試指出點(diǎn)的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,直三棱柱(側(cè)棱垂直于底面的棱柱),底面中 ,棱,分別為的中點(diǎn).
(1)求 >的值;
(2)求證:
(3)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
.(本題滿分12分) 如圖,PA垂直于矩形ABCD所在的平面, ,E、F分別是AB、PD的中點(diǎn).
(1)求證:平面PCE 平面PCD;
(2)求三棱錐P-EFC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
如圖所示,在矩形中,的中點(diǎn),F(xiàn)為BC的中點(diǎn),O為AE的中點(diǎn),以AE為折痕將△ADE向上折起,使D到P點(diǎn)位置,且.
(1)求證:
(2)求二面角E-AP-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)在正四棱錐中,側(cè)棱的長(zhǎng)為,與所成的角的大小等于.
(1)求正四棱錐的體積;
(2)若正四棱錐的五個(gè)頂點(diǎn)都在球的表面上,求此球的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)
已知是四邊形所在平面外一點(diǎn),四邊形是的菱形,側(cè)面
為正三角形,且平面平面.
(1)若為邊的中點(diǎn),求證:平面.
(2)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)如圖,在四棱錐中,平面PAD⊥平面 ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn)
求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com