【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線(xiàn)C2ρ=2sin θ,直線(xiàn)θ(ρ>0),A(2,0).

(1)C1的普通方程化為極坐標(biāo)方程,并求點(diǎn)A到直線(xiàn)的中距離;

(2)設(shè)直線(xiàn)分別交C1,C2于點(diǎn)P,Q,求APQ的面積.

【答案】(1)ρ=4cos θ.距離為1,(2)

【解析】

(1)先把曲線(xiàn)的參數(shù)方程利用平方法消去參數(shù)化為普通方程,由極坐標(biāo)與直角坐標(biāo)方程的互化公式能求出的極坐標(biāo)方程;(2)設(shè)點(diǎn)的極坐標(biāo)分別為代入,,代入,,利用極坐標(biāo)的幾何意義以及三角形面積公式可得結(jié)果.

(1)因?yàn)?/span>C1的普通方程為(x-2)2y2=4,即x2y2-4x=0,

所以C1的極坐標(biāo)方程為ρ2-4ρcos θ=0,即ρ=4cos θ.

(2)依題意,設(shè)點(diǎn)P,Q的極坐標(biāo)分別為,.

θ代入ρ=4cos θ,得ρ1=2,

θ代入ρ=2sin θ,得ρ2=1,

所以|PQ|=|ρ1ρ2|=2-1.

依題意,點(diǎn)A(2,0)到曲線(xiàn)θ (ρ>0)的距離d=|OA|sin=1,

所以SAPQ|PQd×(2-1)×1=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過(guò)點(diǎn)任作一條直線(xiàn)與圓相交于兩點(diǎn)A,B.問(wèn):是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)南宋數(shù)學(xué)家秦九韶(約公元1202﹣1261年)給出了求n(n∈N*)次多項(xiàng)式anxn+an﹣1xn﹣1+…+a1x+a0 , 當(dāng)x=x0時(shí)的值的一種簡(jiǎn)捷算法.該算法被后人命名為“秦九韶算法”,例如,可將3次多項(xiàng)式改寫(xiě)為a3x3+a2x2+a1x+a0=((a3x+a2)x+a1)x+a0 , 然后進(jìn)行求值.運(yùn)行如圖所示的程序框圖,能求得多項(xiàng)式( )的值.
A.x4+x3+2x2+3x+4
B.x4+2x3+3x2+4x+5
C.x3+x2+2x+3
D.x3+2x2+3x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從6雙不同手套中,任取4只,

(1)恰有1雙配對(duì)的取法是多少?

(2)沒(méi)有1雙配對(duì)的取法是多少?

(3)至少有1雙配對(duì)的取法是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次考試中,5名同學(xué)的數(shù)學(xué)、物理成績(jī)?nèi)绫硭荆?/span>

學(xué)生

A

B

C

D

E

數(shù)學(xué)(x)

89

91

93

95

97

物理(y)

87

89

89

92

93

(1)根據(jù)表中數(shù)據(jù),求物理分y關(guān)于數(shù)學(xué)分x的回歸方程,并試估計(jì)某同學(xué)數(shù)學(xué)考100分時(shí),他的物理得分;

(2)要從4名數(shù)學(xué)成績(jī)?cè)?/span>90分以上的同學(xué)中選出2名參加一項(xiàng)活動(dòng),以X表示選中的同學(xué)中物理成績(jī)高于90分的人數(shù),試解決下列問(wèn)題:

①求至少選中1名物理成績(jī)?cè)?/span>90分以下的同學(xué)的概率;

②求隨機(jī)變變量X的分布列及數(shù)學(xué)期望

附:回歸方程:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)準(zhǔn)備在開(kāi)學(xué)時(shí)舉行一次高三年級(jí)優(yōu)秀學(xué)生座談會(huì),擬請(qǐng)20名來(lái)自本校高三(1)(2)(3)(4)班的學(xué)生參加,各班邀請(qǐng)的學(xué)生數(shù)如下表所示;

班級(jí)

高三(1)

高三(2)

高三(3)

高三(4)

人數(shù)

4

6

4

6

(1)從這20名學(xué)生中隨機(jī)選出3名學(xué)生發(fā)言,求這3名學(xué)生中任意兩個(gè)均不屬于同一班級(jí)的概率;

(2)從這20名學(xué)生中隨機(jī)選出3 名學(xué)生發(fā)言,設(shè)來(lái)自高三(3)的學(xué)生數(shù)為,求隨機(jī)變量的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,a,b,c分別為∠A,∠B,∠C的對(duì)邊,且滿(mǎn)足(2c﹣b)tanB=btanA.
(1)求A的大。
(2)求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有5名男生、2名女生站成一排照相,

(1)兩女生要在兩端,有多少種不同的站法?

(2)兩名女生不相鄰,有多少種不同的站法?

(3)女生甲不在左端,女生乙不在右端,有多少種不同的站法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】鈍角三角形ABC的面積是 ,AB=1,BC= ,則AC=(
A.5
B.
C.2
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案