若f(x)和g(x)都是奇函數(shù),且F(x)=f(x)+g(x)+2在(0,+∞)上有最大值8,則在(-∞,0)上F(x)有( 。
分析:由已知中f(x)和g(x)都是奇函數(shù),結合函數(shù)奇偶性的性質,可得F(x)-2=f(x)+g(x)也為奇函數(shù),進而根據(jù)F(x)=f(x)+g(x)+2,在(0,+∞)上有最大值8,我們可得f(x)+g(x)在(0,+∞)上有最大值6,由奇函數(shù)的性質可得f(x)+g(x)在(-∞,0)上有最小值-6,進而得到F(x)=f(x)+g(x)+2在(-∞,0)上有最小值-4.
解答:解:∵f(x)和g(x)都是奇函數(shù),
∴f(x)+g(x)也為奇函數(shù)
又∵F(x)=f(x)+g(x)+2在(0,+∞)上有最大值8,
∴f(x)+g(x)在(0,+∞)上有最大值6,
∴f(x)+g(x)在(-∞,0)上有最小值-6,
∴F(x)=f(x)+g(x)+2在(-∞,0)上有最小值-4,
故選D
點評:本題考查的知識點是函數(shù)奇偶性的性質,函數(shù)的最值及其幾何意義,其中根據(jù)函數(shù)奇偶性的性質,構造出F(x)-2=f(x)+g(x)也為奇函數(shù),是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)和g(x)的定義域、值域都是R,則不等式f(x)>g(x)有解的充要條件是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于定義在區(qū)間[m,n]上的兩個函數(shù)f(x)和g(x),如果對任意的x∈[m,n],均有不等式|f(x)-g(x)|≤1成立,則稱函數(shù)f(x)與g(x)在[m,n]上是“友好”的,否則稱“不友好”的.現(xiàn)在有兩個函數(shù)f(x)=loga(x-3a)與g(x)=loga
1x-a
(a>0,a≠1),給定區(qū)間[a+2,a+3].
(1)若f(x)與g(x)在區(qū)間[a+2,a+3]上都有意義,求a的取值范圍;
(2)討論函數(shù)f(x)與g(x)在區(qū)間[a+2,a+3]上是否“友好”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽二模)對于具有相同定義域D的函數(shù)f(x)和g(x),若對任意的x∈D,都有|f(x)-g(x)|≤1,則稱f(x)和g(x)在D上是“密切函數(shù)”.給出定義域均為D={x|1≤x≤3}的四組函數(shù)如下:
①f(x)=x2-x+1,g(x)=3x-2
②f(x)=x3+x,g(x)=3x2+x-1
③f(x)=log2(x+1),g(x)=3-x
④f(x)=
3
2
sin(
π
3
x+
π
3
),g(x)=
1
4
cos
π
3
x-
3
4
sin
π
3
x
其中,函數(shù)f(x)印g(x)在D上為“密切函數(shù)”的是
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案