設(shè)定義域?yàn)镽的函數(shù)數(shù)學(xué)公式(a,b為實(shí)數(shù))若f(x)是奇函數(shù).
(1)求a與b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)證明對任何實(shí)數(shù)x、c都有f(x)<c2-3c+3成立.

(1)解:∵f(x)是奇函數(shù)時(shí),
∴f(-x)=-f(x),即對任意實(shí)數(shù)x成立.
化簡整理得(2a-b)•22x+(2ab-4)•2x+(2a-b)=0,這是關(guān)于x的恒等式,所以
所以(舍)或
(2)解:f(x)在R上單調(diào)遞減,證明如下:
由(1)知
<0,
∴f(x)在R上單調(diào)遞減;
(3)證明:,
因?yàn)?x>0,所以2x+1>1,,從而;
對任何實(shí)數(shù)c成立;
所以對任何實(shí)數(shù)x、c都有f(x)<c2-3c+3成立.
分析:(1)利用奇函數(shù)的定義,建立等式,即可求a與b的值;
(2)確定函數(shù)解析式,利用導(dǎo)數(shù)法,可得函數(shù)的單調(diào)性;
(3)確定左、又函數(shù)的最值,即可證得結(jié)論.
點(diǎn)評:本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,考查函數(shù)的值域,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)滿足下列條件:①對任意x∈R,f(x)+f(-x)=0;②對任意x1,x2∈[1,a],當(dāng)x2>x1時(shí),有f(x2)>f(x1)>0.則下列不等式不一定成立的是(  )
A、f(a)>f(0)
B、f(
1+a
2
)>f(
a
)
C、f(
1-3a
1+a
)>f(-3)
D、f(
1-3a
1+a
)>f(-a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=|x2-2x|,則關(guān)于x的方程g(x)=
1
3
f3(x)-f2(x)+2
,能讓g(x)取極大值的x個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
|lg|x-1||,x≠1
0,x=1
且關(guān)于x的方程f2(x)+bf(x)+c=0有7個(gè)不同實(shí)數(shù)解,令m=2010b,n=2010c,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)定義域?yàn)镽的函數(shù)f(x)=
4
|x-1
(x≠1)
2
 (x=1)
,若關(guān)于x的方程f2(x)+bf(x)+c=0有三個(gè)不同的實(shí)數(shù)解x1、x2、x3,則x12+x22|x32等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)定義域?yàn)镽的函數(shù)f(x)=
|x+1|,x≤0
x2-2x+1,x>0

(Ⅰ)在平面直角坐標(biāo)系內(nèi)作出函數(shù)f(x)的圖象,并指出f(x)的單調(diào)區(qū)間(不需證明);
(Ⅱ)若方程f(x)+2a=0有兩個(gè)解,求出a的取值范圍(只需簡單說明,不需嚴(yán)格證明).
(Ⅲ)設(shè)定義為R的函數(shù)g(x)為奇函數(shù),且當(dāng)x>0時(shí),g(x)=f(x),求g(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案