把函數(shù)y=sinx(x∈R)的圖象上所有點向左平行移動個單位長度,再把所得圖象上所有點的橫坐標縮短到原來的倍(縱坐標不變),得到的圖象所表示的函數(shù)是( )
A.,x∈R
B.,x∈R
C.,x∈R
D.,x∈R
【答案】分析:根據(jù)左加右減的性質先左右平移,再進行ω伸縮變換即可得到答案.
解答:解:由y=sinx的圖象向左平行移動個單位得到y(tǒng)=sin(x+),
再把所得圖象上所有點的橫坐標縮短到原來的倍得到y(tǒng)=sin(2x+
故選C
點評:本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換,平移變換時注意都是對單個的x或y來運作的.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

為了得到函數(shù)y=2sin
x
2
的圖象,只要把函數(shù)y=sinx圖象上所有的點(  )
A、橫坐標伸長到原來的2倍,再將縱坐標伸長到原來的2倍
B、橫坐標伸長到原來的2倍,再將縱坐標縮短到原來的
1
2
C、橫坐標縮短到原來的
1
2
倍,再將縱坐標伸長到原來的
1
2
D、橫坐標縮短到原來的
1
2
倍,再將縱坐標伸長到原來的2倍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=sinx(x∈R)的圖象上所有點向左平行移動
π
3
個單位長度,再把所得圖象上所有點的橫坐標縮短到原來的
1
2
倍(縱坐標不變),得到的圖象所表示的函數(shù)是( 。
A、y=sin(2x-
π
3
)
,x∈R
B、y=sin(
x
2
+
π
6
)
,x∈R
C、y=sin(2x+
π
3
)
,x∈R
D、y=sin(2x+
3
)
,x∈R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=sinx的圖象經(jīng)過下面那個變換,可得到函數(shù)y=cosx的圖象( 。
A、向右平移
π
2
個單位
B、向左平移
π
2
個單位
C、向右平移π個單位
D、向左平移π個單位

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把函數(shù)y=sinx(x∈R)圖象上所有點的橫坐標縮短到原來的
1
2
倍(縱坐標不變),再把圖象上所有的點向左平行移動
π
6
個單位長度,得到的圖象所表示的函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=sin(2x+
π
6
),有如下結論:
①函數(shù)f(x)的最小正周期為π;
②函數(shù)y=f(x)的圖象關于點(
π
6
,0)成中心對稱;
③函數(shù)y=f(x+t)為偶函數(shù)的一個充分不必要條件是t=
π
6
;
④把函數(shù)y=sinx的圖象向左平移
π
6
個單位后,再把圖象上各點的橫坐標都縮短為原來的一半(縱坐標不變),便得到y(tǒng)=f(x)的圖象.
其中正確的結論有
①③④
①③④
.(把你認為正確結論的序號都填上)

查看答案和解析>>

同步練習冊答案