【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長潛伏者”.
(1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計(jì)算出這500名患者中“長潛伏者”的人數(shù);
(2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下表格.
(i)請(qǐng)將表格補(bǔ)充完整;
短潛伏者 | 長潛伏者 | 合計(jì) | |
60歲及以上 | 90 | ||
60歲以下 | 140 | ||
合計(jì) | 300 |
(ii)研究發(fā)現(xiàn),某藥物對(duì)新冠病毒有一定的抑制作用,現(xiàn)需在樣本中60歲以下的140名患者中按分層抽樣方法抽取7人做I期臨床試驗(yàn),再從選取的7人中隨機(jī)抽取兩人做Ⅱ期臨床試驗(yàn),求兩人中恰有1人為“長潛伏者”的概率.
【答案】(1)6,250人;(2)(i)見解析;(ii).
【解析】
(1)由頻率分布直方圖各段中間值乘以各段的概率再相加即為平均值;由頻率分布直方圖可知“長潛伏者”即潛伏期時(shí)間不低于6天的頻率,將其乘以樣本總量即可;
(2)(i)由表格數(shù)據(jù)合計(jì)開始逐層推進(jìn),由分層抽樣計(jì)算數(shù)據(jù)并求值填表;
(ii)列出所有基本事件可能,再由古典概型概率計(jì)算公式求解.
(1)平均數(shù)
.
由頻率分布直方圖可知“長潛伏者”即潛伏期時(shí)間不低于6天的頻率為
所以500人中“長潛伏者”的人數(shù)為人
(2)(i)由題意補(bǔ)充后的表格如圖:
短潛伏者 | 長潛伏者 | 合計(jì) | |
60歲及以上 | 90 | 70 | 160 |
60歲以下 | 60 | 80 | 140 |
合計(jì) | 150 | 150 | 300 |
由合計(jì)值300減去60歲以下的合計(jì)140可得60歲以上的合計(jì)160;
長潛伏者的人數(shù)為人,則短潛伏者也為150人;
即短潛伏者中60歲以下的人數(shù)為150-90=60人,
長潛伏者中60歲以上的人數(shù)為160-90=70人,60歲以下的人數(shù)為150-70=80人.
(ii)由分層抽樣知7人中,“短潛伏者”有3人,記為,“長潛伏者”有4人,記為D,E,F,G,
從中抽取2人,共有,,,,,,,
,,,,,,,,,
,,,,,
共有21種不同的結(jié)果,兩人中恰好有1人為“長潛伏者”包含了12種結(jié)果.
所以所求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一小袋中有3個(gè)紅色、3個(gè)白色的乒乓球(其體積、質(zhì)地完全相同),從袋中隨機(jī)摸出3個(gè)球.
(1)求摸出的3個(gè)球都為白球的概率是多少?
(2)求摸出的3個(gè)球?yàn)?/span>2個(gè)紅球、1個(gè)白球的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),若存在區(qū)間,使在上的值域?yàn)?/span>,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次戰(zhàn)役中,狙擊手A受命射擊敵機(jī),若要擊落敵機(jī),需命中機(jī)首2次或命中機(jī)中3次或命中機(jī)尾1次,已知A每次射擊,命中機(jī)首、機(jī)中、機(jī)尾的概率分別為0.2、0.4、0.1,未命中敵機(jī)的概率為0.3,且各次射擊相互獨(dú)立。若A至多射擊兩次,則他能擊落敵機(jī)的概率為( )
A. 0.23 B. 0.2 C. 0.16 D. 0.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)其中,為常數(shù)且在處取得極值.
1當(dāng)時(shí),求的單調(diào)區(qū)間;
2若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)若兩條互相垂直的直線都經(jīng)過原點(diǎn)(兩條直線與坐標(biāo)軸都不重合)且與曲線分別交于點(diǎn)(異于原點(diǎn)),且,求這兩條直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,一單位圓的圓心的初始位置在,此時(shí)圓上一點(diǎn)P的位置在,圓在x軸上沿正向滾動(dòng).當(dāng)圓滾動(dòng)到圓心位于時(shí),的坐標(biāo)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com