【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間和零點;

(2)若恒成立,求的取值范圍.

【答案】(1)單調(diào)遞減區(qū)間:;單調(diào)遞增區(qū)間:;零點為:(2)

【解析】

1)求導(dǎo)根據(jù)導(dǎo)函數(shù)正負(fù)得到單調(diào)區(qū)間;令,再結(jié)合單調(diào)性可知唯一零點為;(2)將不等式轉(zhuǎn)化為圖像恒在上方,利用臨界狀態(tài),即直線與相切的情況,求得相切時;從而可構(gòu)造出,利用導(dǎo)數(shù)求得,由此可得取值范圍.

(1)

,解得:

所以函數(shù)上單調(diào)遞減,在上單調(diào)遞增

單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為

,解得:

所以函數(shù)的零點是

(2)畫出的大致圖像,如圖所示

設(shè),則的圖像恒過點

設(shè)函數(shù)的圖像在點處的切線過點

所以,

的圖像在處的切線方程為

代入切線方程,得

整理得:

設(shè)

,得

所以,上單調(diào)遞增,在上單調(diào)遞減

,,

所以是方程的唯一解

所以過點且與的圖像相切的直線方程為

,則

當(dāng)時,;當(dāng)時,

,即上恒成立

即函數(shù)的圖像恒在其切線的上方

數(shù)形結(jié)合可知,的取值范圍

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,右焦點為,左頂點為A,右頂點B在直線上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)點P是橢圓C上異于A,B的點,直線交直線于點,當(dāng)點運(yùn)動時,判斷以為直徑的圓與直線PF的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的方程為:,為圓上任意一點,過軸的垂線,垂足為,點上,且.

(1)求點的軌跡的方程;

(2)過點的直線與曲線交于、兩點,點的坐標(biāo)為,的面積為,求的最大值,及直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)ax2(aR),g(x)2ln x.

(1)討論函數(shù)F(x)f(x)g(x)的單調(diào)性;

(2)若方程f(x)g(x)在區(qū)間[,e]上有兩個不等解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓O經(jīng)過橢圓C=1ab0)的兩個焦點以及兩個頂點,且點(b,)在橢圓C上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線l與圓O相切,與橢圓C交于M、N兩點,且|MN|=,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線y=5,:

(1)曲線上與直線y=2x-4平行的切線方程.

(2)求過點P(0,5),且與曲線相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知依次滿足

(1)求點的軌跡;

(2)過點作直線交以為焦點的橢圓于兩點,線段的中點到軸的距離為,且直線與點的軌跡相切,求該橢圓的方程;

(3)在(2)的條件下,設(shè)點的坐標(biāo)為,是否存在橢圓上的點及以為圓心的一個圓,使得該圓與直線都相切,如存在,求出點坐標(biāo)及圓的方程,如不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

設(shè),對任意的恒成立,求整數(shù)的最大值;

求證:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,過橢圓Eab0)的左焦點F1x軸的垂線交橢圓EP,Q兩點,點A,B是橢圓E的頂點,且ABOPF2為右焦點,△PF2Q的周長為8

1)求橢圓E的方程;

2)過點F1作直線l與橢圓E交于C,D兩點,若△OCD的面積為,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案