精英家教網 > 高中數學 > 題目詳情

【題目】已知圓O經過橢圓C=1ab0)的兩個焦點以及兩個頂點,且點(b,)在橢圓C上.

(Ⅰ)求橢圓C的方程;

(Ⅱ)若直線l與圓O相切,與橢圓C交于MN兩點,且|MN|=,求直線l的傾斜角.

【答案】(1);(2)

【解析】

(1)先由題意得出 ,可得出的等量關系,然后將點的坐標代入橢圓的方程,可求出的值,從而得出橢圓的方程;(2)對直線的斜率是否存在進行分類討論,當直線的斜率不存在時,可求出,然后進行檢驗;當直線的斜率存在時,可設直線的方程為,設點,先由直線與圓相切得出之間的關系,再將直線的方程與橢圓的方程聯立,由韋達定理,利用弦長公式并結合條件得出的值,從而求出直線的傾斜角.

(1)由題可知圓只能經過橢圓的上下頂點,所以橢圓焦距等于短軸長,可得,

又點在橢圓上,所以,解得

即橢圓的方程為.

(2)圓的方程為,當直線不存在斜率時,解得,不符合題意;

當直線存在斜率時,設其方程為,因為直線與圓相切,所以,即.

將直線與橢圓的方程聯立,得:

,

判別式,即

,則

所以,

解得,

所以直線的傾斜角為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(多選題)設正實數滿足,則()

A. 有最小值4B. 有最小值

C. 有最大值D. 有最小值

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在R上的函數滿足,且為偶函數,若內單調遞減,則下面結論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓與直線相切,圓心在軸上,且直線被圓截得的弦長為

1)求圓的方程;

2)過點作斜率為的直線與圓交于兩點,若直線的斜率乘積為,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設三位數,若以為三條邊的長可以構成一個等腰(含等邊)三角形,則這樣的位數(  )

A.45個 B81個 C165個 D216個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)討論函數 的單調性;

(2)若曲線上存在唯一的點,使得曲線在該點處的切線與曲線只有一個公共點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點,O為坐標原點.

(1)求雙曲線C2的方程;

(2)若直線lykx與雙曲線C2恒有兩個不同的交點AB,且,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線與坐標軸的交點都在圓上.

(1)求圓的方程;

(2)若圓與直線交于,兩點,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,ADAP=4,ABBC=2,MPC的中點點N在線段AD.

(1)點N為線段AD的中點時,求證:直線PA∥面BMN;

(2)若直線MN與平面PBC所成角的正弦值為,求二面角CBMN所成角θ的余弦值.

查看答案和解析>>

同步練習冊答案