已知點(diǎn)列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線上的點(diǎn),點(diǎn)列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點(diǎn),其中x1=a(0<a<1),對(duì)任意的n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.
(1)證明:數(shù)列{yn}是等差數(shù)列;
(2)求證:對(duì)任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式;
(3)若等腰三角形AnBnAn+1中,是否有正三角形,若有,求出實(shí)數(shù)a
解:(1)依題意有,于是. 所以數(shù)列是等差數(shù)列 4分 (2)由題意得,即,() 、 所以又有. ② 由②①得:,所以是常數(shù). 由都是等差數(shù)列. ,那么得, .( 故 10分 (3)當(dāng)為奇數(shù)時(shí),,所以 當(dāng)為偶數(shù)時(shí),所以 作軸,垂足為則,要使等腰三角形為正三角形,必須且只須:. 當(dāng)為奇數(shù)時(shí),有,即 、 ,當(dāng)時(shí),不合題意. 當(dāng)為偶數(shù)時(shí),有,,同理可求得. ;;當(dāng)時(shí),不合題意. 綜上所述,使等腰三角形中,有正三角形,的值為 ;;; 16分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
x | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
4 |
1 |
12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
4 |
1 |
12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:陜西省寶雞中學(xué)2012屆高三第四次月考數(shù)學(xué)理科試題 題型:044
已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N+)順次為一次函數(shù)y=x+圖像上的點(diǎn),點(diǎn)列A1(x1,0)、A2(x2,0)、…、(n∈N+)順次為x軸正半軸上的點(diǎn),其中x1=a(0<a<1),對(duì)于任意n∈N+,點(diǎn)構(gòu)成一個(gè)頂角的頂點(diǎn)為Bn的等腰三角形.
(1)求數(shù)列{yn}的通項(xiàng)公式,并證明{yn}是等差數(shù)列;
(2)證明為常數(shù),并求出數(shù)列{xn}的通項(xiàng)公式;
(3)在上述等腰三角形中,是否存在直角三角形?若有,求出此時(shí)a值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com