已知點(diǎn)列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線上的點(diǎn),點(diǎn)列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點(diǎn),其中x1=a(0<a<1),對(duì)任意的n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.

(1)證明:數(shù)列{yn}是等差數(shù)列;

(2)求證:對(duì)任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式;

(3)若等腰三角形AnBnAn+1中,是否有正三角形,若有,求出實(shí)數(shù)a

答案:
解析:

  解:(1)依題意有,于是

  所以數(shù)列是等差數(shù)列  4分

  (2)由題意得,即,() 、

  所以又有.  ②

  由②①得:,所以是常數(shù).

  由都是等差數(shù)列.

  ,那么得

  .(

  故  10分

  (3)當(dāng)為奇數(shù)時(shí),,所以

  當(dāng)為偶數(shù)時(shí),所以

  作軸,垂足為,要使等腰三角形為正三角形,必須且只須:

  當(dāng)為奇數(shù)時(shí),有,即 、

  ,當(dāng)時(shí),不合題意.

  當(dāng)為偶數(shù)時(shí),有,,同理可求得

;;當(dāng)時(shí),不合題意.

  綜上所述,使等腰三角形中,有正三角形,的值為

  ;;;  16分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點(diǎn),點(diǎn)列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點(diǎn),其中x1=a(0<a<1),對(duì)任意的n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.
(Ⅰ)求證:對(duì)任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式;
(Ⅱ)問是否存在等腰直角三角形AnBnAn+1?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)順次為一次函數(shù)y=
1
4
x+
1
12
圖象上的點(diǎn),點(diǎn)列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)順次為x軸正半軸上的點(diǎn),其中x1=a(0<a<1),對(duì)于任意n∈N,點(diǎn)An、Bn、An+1構(gòu)成以
Bn為頂點(diǎn)的等腰三角形.
(1)求{yn}的通項(xiàng)公式,且證明{yn}是等差數(shù)列;
(2)試判斷xn+2-xn是否為同一常數(shù)(不必證明),并求出數(shù)列{xn}的通項(xiàng)公式;
(3)在上述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此時(shí)a值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•上海模擬)已知點(diǎn)列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)順次為直線y=
x4
上的點(diǎn),點(diǎn)列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)順次為x軸上的點(diǎn),其中x1=a(0<a<1),對(duì)任意的n∈N*,點(diǎn)An、Bn、An+1構(gòu)成以Bn為頂點(diǎn)的等腰三角形.
(1)證明:數(shù)列{yn}是等差數(shù)列;
(2)求證:對(duì)任意的n∈N*,xn+2-xn是常數(shù),并求數(shù)列{xn}的通項(xiàng)公式;
(3)對(duì)上述等腰三角形AnBnAn+1添加適當(dāng)條件,提出一個(gè)問題,并做出解答.(根據(jù)所提問題及解答的完整程度,分檔次給分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)順次為一次函數(shù)y=
1
4
x+
1
12
圖象上的點(diǎn),點(diǎn)列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)順次為x軸正半軸上的點(diǎn),其中x1=a(0<a<1),對(duì)于任意n∈N,點(diǎn)An、Bn、An+1構(gòu)成一個(gè)頂角的頂點(diǎn)為Bn的等腰三角形.
(1)求數(shù)列{yn}2的通項(xiàng)公式,并證明{yn}3是等差數(shù)列;
(2)證明xn+2-xn5為常數(shù),并求出數(shù)列{xn}6的通項(xiàng)公式;
(3)問上述等腰三角形An8Bn9An+110中,是否存在直角三角形?若有,求出此時(shí)a值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省寶雞中學(xué)2012屆高三第四次月考數(shù)學(xué)理科試題 題型:044

已知點(diǎn)列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N+)順次為一次函數(shù)y=x+圖像上的點(diǎn),點(diǎn)列A1(x1,0)、A2(x2,0)、…、(n∈N+)順次為x軸正半軸上的點(diǎn),其中x1=a(0<a<1),對(duì)于任意n∈N+,點(diǎn)構(gòu)成一個(gè)頂角的頂點(diǎn)為Bn的等腰三角形.

(1)求數(shù)列{yn}的通項(xiàng)公式,并證明{yn}是等差數(shù)列;

(2)證明為常數(shù),并求出數(shù)列{xn}的通項(xiàng)公式;

(3)在上述等腰三角形中,是否存在直角三角形?若有,求出此時(shí)a值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案