以橢圓的兩個焦點(diǎn)為直徑的端點(diǎn)的圓與橢圓交于四個不同的點(diǎn),順次連接這四個點(diǎn)和兩個焦點(diǎn)恰好組成一個正六邊形,那么這個橢圓的離心率為(  )
A、
3
-
2
B、
3
-1
C、
2
2
D、
3
2
分析:設(shè)橢圓的兩個焦點(diǎn)為F1,F(xiàn)2,圓與橢圓交于A,B,C,D四個不同的點(diǎn),設(shè)|F1F2|=2c,則|DF1|=c,|DF2|=
3
c.由橢圓的定義知2a=||DF1|+|DF2|=
3
c+c,根據(jù)離心率公式求得答案.
解答:解:設(shè)橢圓的兩個焦點(diǎn)為F1,F(xiàn)2,圓與橢圓交于A,B,C,D四個不同的點(diǎn),
設(shè)|F1F2|=2c,則|DF1|=c,|DF2|=
3
c.
橢圓定義,得2a=||DF1|+|DF2|=
3
c+c,
所以e=
c
a
=
2
3
+1
=
3
-1,
故選B.
點(diǎn)評:本題主要考查了橢圓的簡單性質(zhì).特別是橢圓定義的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過點(diǎn)且垂直于橢圓的長軸,動直線

于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

(3)當(dāng)P不在軸上時,在曲線上是否存在兩個不同點(diǎn)C、D關(guān)于對稱,若存在,

求出的斜率范圍,若不存在,說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案