若整數(shù)x,y滿足
2x+3y-6≥0
3x+y-6≥0
,則2x+y最小值為
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
設(shè)z=2x+y得y=-2x+z,
平移直線y=-2x+z,由圖象可知當(dāng)直線y=-2x+z經(jīng)過點A時,
直線y=-2x+z的截距最小,此時z最小,
2x+3y-6=0
3x+y-6=0
,解得
x=
12
7
y=
6
7
,
即A(
12
7
,
6
7
),
此時z=2×
12
7
+
6
7
=
30
7

故答案為:
30
7
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(bsinx,acosx),
n
=(cosx,-cosx),f(x)=
m
n
+a,其中a,b,x∈R.且滿足f(
π
6
)=2,f′(0)=2
3

(Ⅰ)求a,b的值;
(Ⅱ)若關(guān)于x的方程f(x)-log 
1
3
k=0在區(qū)間[0,
3
]上總有實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

4x+3y<12
x-y>-1
y≥0
表示的平面區(qū)域內(nèi)整點的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知A(-1,0),B(0,1),則滿足PA2-PB2=4且在圓x2+y2=4上的點P的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點M(3,m)在不等式組
x+y-2≥0
2x-y+2≥0
表示的平面區(qū)域內(nèi),則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=3sin(2x-
π
6
)在區(qū)間[0,
π
2
]上的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下命題:
①若“p且q”為假命題,則p,q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③命題“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
④“a≥5”是“?x∈[1,2],x2-a≤0恒成立”的充要條件.
其中所有正確的命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論正確的是
 
(寫出所有正確結(jié)論的序號)
(1)常數(shù)列既是等差數(shù)列,又是等比數(shù)列;
(2)若直角三角形的三邊a、b、c成等差數(shù)列,則a、b、c之比為3:4:5;
(3)若三角形ABC的三內(nèi)角A、B、C成等差數(shù)列,則B=60°;
(4)若數(shù)列{an}的前n項和為Sn=n2+n+1,則{an}的通項公式an=2n+1;
(5)若數(shù)列{an}的前n項和為Sn=3n-1,則{an}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題是( 。
A、若a>b>0,a>c,則a2>bc
B、若a>b>c,則
a
c
b
c
C、若a>b,n∈N*,則an>bn
D、若a>b>0,則1na<1nb

查看答案和解析>>

同步練習(xí)冊答案