已知數(shù)列中,且點在直線上。
(1)求數(shù)列的通項公式;
(2)若函數(shù)求函數(shù)的最小值;
(3)設(shè)表示數(shù)列的前項和.試問:是否存在關(guān)于的整式,使得對于一切不小于2的自然數(shù)恒成立?若存在,寫出的解析式,并加以證明;若不存在,試說明理由。
(1)="n" (2)(3)存在,證明詳見解析

試題分析:(1)把點P()代入直線xy1=0得到,可知數(shù)列{}是等差數(shù)列.最后寫出等差數(shù)列的通項公式=n.(2)首先求出的表達(dá)式,通過判斷的符號,確定的單調(diào)性,從而求出最小值.(3)求出,Sn的表達(dá)式,可得,
由該遞推公式可得到
,故.
試題解析:(1)點P()在直線xy1=0上,即且a1=1,
數(shù)列{}是以1為首項,1為公差的等差數(shù)列.(2)
=n()a1=1滿足=n,所以數(shù)列的通項公式為=n.
(2)


是單調(diào)遞增,故的最小值是
(3)
,
 ,


.
故存在關(guān)于n的整式使等式對一切不小于2的自然數(shù)n恒成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是等差數(shù)列的前項和,滿足;是數(shù)列的前項和,滿足:
(1)求數(shù)列,的通項公式;
(2)求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知是曲線C:上的一點(其中),過點作與曲線C在處的切線垂直的直線軸于點,過作與軸垂直的直線與曲線C在第一象限交于點;再過點作與曲線C在處的切線垂直的直線交軸于點,過作與軸垂直的直線與曲線C在第一象限交于點;如此繼續(xù)下去,得一系列的點、、、、。(其中

(1)求數(shù)列的通項公式。
(2)若,且是數(shù)列的前項和,是數(shù)列的前

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項和,
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)若,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列前三項的和為,前三項的積為.
(1)求等差數(shù)列的通項公式;
(2)若,,成等比數(shù)列,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三個數(shù)成等比數(shù)列,其積為512,如果第一個數(shù)與第三個數(shù)各減2,則成等差數(shù)列,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列中,.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)當(dāng)取最大值時求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,三個內(nèi)角、、所對的邊分別為、、,若內(nèi)角、依次成等差數(shù)列,且不等式的解集為,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若數(shù)列中,,則=________.

查看答案和解析>>

同步練習(xí)冊答案