【題目】已知等比數(shù)列滿足,,.
求數(shù)列的通項公式;
設(shè),求的前n項和為.
【答案】(1)(2)
【解析】
試題分析:(1)根據(jù)等比數(shù)列的首項和公比求通項公式;一般轉(zhuǎn)化為首項和公比列方程求解,注意題中限制條件;(2)先求{}的通項公式然后再求和,除此外還會有觀察數(shù)列的特點形式,看使用什么方法求和.使用裂項法求和時,要注意正負項相消時消去了哪些項,保留了哪些項,切不可漏寫未被消去的項,未被消去的項有前后對稱的特點,實質(zhì)上造成正負相消是此法的根源和目的.(3)在做題時注意觀察式子特點選擇有關(guān)公式和性質(zhì)進行化簡,這樣給做題帶來方便,掌握常見求和方法,如分組轉(zhuǎn)化求和,裂項法,錯位相減.
試題解析:1)設(shè)數(shù)列{}的首項為,公比為,所以,所以,
所以
(2)因為,所以數(shù)列{}的前項和.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e為自然對數(shù)的底數(shù),若f(1)=0,f′(x)是f(x)的導函數(shù),函數(shù)f′(x)在區(qū)間(0,1)內(nèi)有兩個零點,則a的取值范圍是( )
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把函數(shù) 的圖象上每個點的橫坐標擴大到原來的4倍,再向左平移 ,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個單調(diào)遞減區(qū)間為( )
A.
B. ??
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,對每個正整數(shù),有或.如這個數(shù)列可以為1,2,4,6,10….
(1)若某一項為奇數(shù),且不為3的倍數(shù),證明:;
(2)證明:;
(3)若在的前2015項中,恰有t個項為奇數(shù),求t的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:(a>b>0)的兩個焦點分別為F1,F2,離心率為,過F1的直線l與橢圓C交于M,N兩點,且△MNF2的周長為8.
(1)求橢圓C的方程;
(2)若直線y=kx+b與橢圓C分別交于A,B兩點,且OA⊥OB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)a是一個各位數(shù)字都不是0且沒有重復數(shù)字的三位數(shù),將組成a的3個數(shù)字按從小到大排成的三位數(shù)記為I(a),按從大到小排成的三位數(shù)記為D(a),(例如a=746, 則I(a)=467,D(a)=764)閱讀如右圖所示的程序框圖,運行相應的程序,任意輸入一個a,輸出的結(jié)果b= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正六邊形ABCDEF的邊長為2,沿對角線AE將△FAE的頂點F翻折到點P處,使得 .
(1)求證:平面PAE⊥平面ABCDE;
(2)求二面角B﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com